Zobrazeno 1 - 10
of 2 112
pro vyhledávání: '"Knap P"'
Autor:
Rehman, Adil, Petriakov, Volodymyr, Yahniuk, Ivan, Kazakov, Aleksandr, Rogalska, Iwona, Grendysa, Jakub, Marchewka, Michał, Haras, Maciej, Wojtowicz, Tomasz, Cywiński, Grzegorz, Knap, Wojciech, Rumyantsev, Sergey
Hg$_{1-x}$Cd$_x$Te is a unique material with the band-gap tunable by the temperature, pressure, and cadmium content in a wide range, from 1.6 eV to inverted band-gap of -0.3 eV. This makes Hg$_{1-x}$Cd$_x$Te one of the key materials for infrared and
Externí odkaz:
http://arxiv.org/abs/2410.23755
The realization of synthetic gauge fields for charge neutral ultracold atoms and the simulation of quantum Hall physics has witnessed remarkable experimental progress. Here, we establish key signatures of fractional quantum Hall systems in their non-
Externí odkaz:
http://arxiv.org/abs/2410.07326
Fractional quantum Hall states are the most prominent example of states with topological order, hosting excitations with fractionalized charge. Recent experiments in twisted $\text{MoTe}_2$ and graphene-based heterostructures provide evidence of frac
Externí odkaz:
http://arxiv.org/abs/2410.07319
Autor:
Mhenni, Amine Ben, Kadow, Wilhelm, Metelski, Mikołaj J., Paulus, Adrian O., Dijkstra, Alain, Watanabe, Kenji, Taniguchi, Takashi, Tongay, Seth Ariel, Barbone, Matteo, Finley, Jonathan J., Knap, Michael, Wilson, Nathan P.
Quantum gases consisting of species with distinct quantum statistics, such as Bose-Fermi mixtures, can behave in a fundamentally different way than their unmixed constituents. This makes them an essential platform for studying emergent quantum many-b
Externí odkaz:
http://arxiv.org/abs/2410.07308
Topological magnon insulators exhibit robust edge modes with chiral properties similar to quantum Hall edge states. However, due to their strong localization at the edges, interactions between these chiral edge magnons can be significant, as we show
Externí odkaz:
http://arxiv.org/abs/2410.05378
Autor:
Upadhyay, Pranshoo, Suárez-Forero, Daniel G., Huang, Tsung-Sheng, Mehrabad, Mahmoud Jalali, Gao, Beini, Sarkar, Supratik, Session, Deric, Watanabe, Kenji, Taniguchi, Takashi, Zhou, You, Knap, Michael, Hafezi, Mohammad
Bose-Fermi mixtures naturally appear in various physical systems. In semiconductor heterostructures, such mixtures can be realized, with bosons as excitons and fermions as dopant charges. However, the complexity of these hybrid systems challenges the
Externí odkaz:
http://arxiv.org/abs/2409.18357
Transition metal dichalcogenide (TMD) heterostructures have emerged as promising platforms for realizing tunable Bose-Fermi mixtures. Their constituents are fermionic charge carriers resonantly coupled to long-lived bosonic interlayer excitons, allow
Externí odkaz:
http://arxiv.org/abs/2409.18176
Autor:
Cochran, Tyler A., Jobst, Bernhard, Rosenberg, Eliott, Lensky, Yuri D., Gyawali, Gaurav, Eassa, Norhan, Will, Melissa, Abanin, Dmitry, Acharya, Rajeev, Beni, Laleh Aghababaie, Andersen, Trond I., Ansmann, Markus, Arute, Frank, Arya, Kunal, Asfaw, Abraham, Atalaya, Juan, Babbush, Ryan, Ballard, Brian, Bardin, Joseph C., Bengtsson, Andreas, Bilmes, Alexander, Bourassa, Alexandre, Bovaird, Jenna, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Burger, Tim, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chen, Zijun, Chiaro, Ben, Claes, Jahan, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Crook, Alexander L., Curtin, Ben, Das, Sayan, Demura, Sean, De Lorenzo, Laura, Di Paolo, Agustin, Donohoe, Paul, Drozdov, Ilya, Dunsworth, Andrew, Eickbusch, Alec, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Gasca, Robert, Genois, Élie, Giang, William, Gilboa, Dar, Gosula, Raja, Dau, Alejandro Grajales, Graumann, Dietrich, Greene, Alex, Gross, Jonathan A., Habegger, Steve, Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heu, Paula, Higgott, Oscar, Hilton, Jeremy, Huang, Hsin-Yuan, Huff, Ashley, Huggins, William J., Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Joshi, Chaitali, Juhas, Pavol, Kafri, Dvir, Kang, Hui, Karamlou, Amir H., Kechedzhi, Kostyantyn, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kim, Seon, Klimov, Paul V., Kobrin, Bryce, Korotkov, Alexander N., Kostritsa, Fedor, Kreikebaum, John Mark, Kurilovich, Vladislav D., Landhuis, David, Lange-Dei, Tiano, Langley, Brandon W., Lau, Kim-Ming, Ledford, Justin, Lee, Kenny, Lester, Brian J., Guevel, Loïck Le, Li, Wing Yan, Lill, Alexander T., Livingston, William P., Locharla, Aditya, Lundahl, Daniel, Lunt, Aaron, Madhuk, Sid, Maloney, Ashley, Mandrà, Salvatore, Martin, Leigh S., Martin, Orion, Maxfield, Cameron, McClean, Jarrod R., McEwen, Matt, Meeks, Seneca, Megrant, Anthony, Miao, Kevin C., Molavi, Reza, Molina, Sebastian, Montazeri, Shirin, Movassagh, Ramis, Neill, Charles, Newman, Michael, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, Niu, Murphy Yuezhen, Oliver, William D., Ottosson, Kristoffer, Pizzuto, Alex, Potter, Rebecca, Pritchard, Orion, Quintana, Chris, Ramachandran, Ganesh, Reagor, Matthew J., Rhodes, David M., Roberts, Gabrielle, Sankaragomathi, Kannan, Satzinger, Kevin J., Schurkus, Henry F., Shearn, Michael J., Shorter, Aaron, Shutty, Noah, Shvarts, Vladimir, Sivak, Volodymyr, Small, Spencer, Smith, W. Clarke, Springer, Sofia, Sterling, George, Suchard, Jordan, Szasz, Aaron, Sztein, Alex, Thor, Douglas, Torunbalci, M. Mert, Vaishnav, Abeer, Vargas, Justin, Vdovichev, Sergey, Vidal, Guifre, Heidweiller, Catherine Vollgraff, Waltman, Steven, Wang, Shannon X., Ware, Brayden, White, Theodore, Wong, Kristi, Woo, Bryan W. K., Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zalcman, Adam, Zhang, Yaxing, Zhu, Ningfeng, Zobris, Nicholas, Boixo, Sergio, Kelly, Julian, Lucero, Erik, Chen, Yu, Smelyanskiy, Vadim, Neven, Hartmut, Gammon-Smith, Adam, Pollmann, Frank, Knap, Michael, Roushan, Pedram
Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emerg
Externí odkaz:
http://arxiv.org/abs/2409.17142
Autor:
Białek, Marcin, Todorov, Yanko, Stelmaszczyk, Kamil, Szwagierczak, Dorota, Synkiewicz-Musialska, Beata, Kulawik, Jan, Palka, Norbert, Potemski, Marek, Knap, Wojciech
Publikováno v:
Adv. Funct. Mater. 2024, 2416037
The interaction between light and matter in condensed matter excitations and electromagnetic resonators serves as a rich playground for fundamental research and lies at the core of photonic and quantum technologies. Herein, we present comprehensive e
Externí odkaz:
http://arxiv.org/abs/2407.13305
We explore the hypothesis that LLMs, such as GPT-3.5 and GPT-4, possess broader cognitive functions, particularly in non-linguistic domains. Our approach extends beyond standard linguistic benchmarks by incorporating games like Tic-Tac-Toe, Connect F
Externí odkaz:
http://arxiv.org/abs/2407.11068