Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Klevdal, Christian"'
Autor:
Howe, Sean, Klevdal, Christian
For an algebraically closed non-archimedean extension $C/\mathbb{Q}_p$, we define a Tannakian category of $p$-adic Hodge structures over $C$ that is a local, $p$-adic analog of the global, archimedean category of $\mathbb{Q}$-Hodge structures in comp
Externí odkaz:
http://arxiv.org/abs/2308.11065
Autor:
Howe, Sean, Klevdal, Christian
We reinterpret and generalize the construction of local Shimura varieties and their non-minuscule analogs by viewing them as moduli spaces of admissible pairs. Our main application is a bi-analytic Ax-Lindemann theorem comparing, in the basic case, r
Externí odkaz:
http://arxiv.org/abs/2308.11064
Autor:
Klevdal, Christian, Patrikis, Stefan
For a Shimura variety $(G, X)$ in the superrigid regime and neat level subgroup $K_0$, we show that the canonical family of $\ell$-adic representations associated to a number field point $y \in \mathrm{Sh}_{K_0}(G, X)(F)$, \[ \left\{ \rho_{y, \ell} \
Externí odkaz:
http://arxiv.org/abs/2303.03863
Autor:
Klevdal, Christian, Patrikis, Stefan
Let $G$ be a reductive group, and let $X$ be a smooth quasi-projective complex variety. We prove that any $G$-irreducible, $G$-cohomologically rigid local system on $X$ with finite order abelianization and quasi-unipotent local monodromies is integra
Externí odkaz:
http://arxiv.org/abs/2009.07350
Autor:
Klevdal, Christian
Under the assumption of the Hodge, Tate and Fontaine-Mazur conjectures we give a criterion for a compatible system of l-adic representations to be isomorphic to the second cohomology of a K3 surface.
Comment: 12 pages
Comment: 12 pages
Externí odkaz:
http://arxiv.org/abs/1807.02579
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Klevdal, Christian
Publikováno v:
Research in Number Theory; March 2019, Vol. 5 Issue: 1 p1-12, 12p