Zobrazeno 1 - 10
of 68
pro vyhledávání: '"Kleppe, Jan O."'
Autor:
Kleppe, Jan O., Miró-Roig, Rosa M.
Let $\varphi: F\longrightarrow G$ be a graded morphism between free $R$-modules of rank $t$ and $t+c-1$, respectively, and let $I_j(\varphi)$ be the ideal generated by the $j \times j$ minors of a matrix representing $\varphi$. In this short note: (1
Externí odkaz:
http://arxiv.org/abs/2311.08008
Autor:
Kleiman, Steven L., Kleppe, Jan O.
Macaulay Duality, between quotients of a polynomial ring over a field, annihilated by powers of the variables, and finitely generated submodules of the ring's graded dual, is generalized over any Noetherian ring, and used to provide isomorphisms betw
Externí odkaz:
http://arxiv.org/abs/2210.10934
Autor:
Kleppe, Jan O., Miró-Roig, Rosa M.
Publikováno v:
Mem. Amer. Math. Soc. 286 (2023), no 1418, 1-113
Let $Hilb ^{p(t)}(P^n)$ be the Hilbert scheme of closed subschemes of $P^n$ with Hilbert polynomial $p(t) \in Q[t]$, and let $W:= \overline{W(\underline{b};\underline{a};r)}$ be the closure of the locus in $Hilb ^{p(t)}(P^n)$ of determinantal schemes
Externí odkaz:
http://arxiv.org/abs/2007.12119
Autor:
Kleppe, Jan O., Miró-Roig, Rosa M.
Publikováno v:
Algebr Represent Theor (2017) 20:1029-1059
This work is entirely devoted to construct huge families of indecomposable arithmetically Cohen-Macaulay (resp. Ulrich) sheaves E of arbitrary high rank on a general standard (resp. linear) determinantal scheme X\subset \PP^n of codimension c \ge 1,
Externí odkaz:
http://arxiv.org/abs/1803.08303
Autor:
Kleppe, Jan O.
Publikováno v:
Rend. Circ. Mat. Palermo, II. Ser (2017) 66:97-112
We continue the study of maximal families W of the Hilbert scheme, H(d,g)_{sc}, of smooth connected space curves whose general curve C lies on a smooth degree-s surface S containing a line. For s > 3, we extend the two ranges where W is a unique irre
Externí odkaz:
http://arxiv.org/abs/1801.01101
Autor:
Kleppe, Jan O.
Let GradAlg(H) be the scheme parameterizing graded quotients of R=k[x_0,...,x_n] with Hilbert function H (it is a subscheme of the Hilbert scheme of P^n if we restrict to quotients of positive dimension, see definition below). A graded quotient A=R/I
Externí odkaz:
http://arxiv.org/abs/1506.08087
Autor:
Kleppe, Jan O., Miró-Roig, Rosa M.
Publikováno v:
J. Reine Angew. Math. (online 18.06.2014)
Let X be a standard determinantal scheme X \subset \PP^n of codimension c, i.e. a scheme defined by the maximal minors of a t \times (t+c-1) homogeneous polynomial matrix A. In this paper, we study the main features of its normal sheaf \shN_X. We pro
Externí odkaz:
http://arxiv.org/abs/1403.7383
Publikováno v:
Collectanea Mathematica online (2018)
We compare deformations of algebras to deformations of schemes in the setting of invariant theory. Our results generalize comparison theorems of Schlessinger and the second author for projective schemes. We consider deformations (abstract and embedde
Externí odkaz:
http://arxiv.org/abs/1209.3444