Zobrazeno 1 - 10
of 365
pro vyhledávání: '"Klein Gordon lattices"'
Deflation is an efficient numerical technique for identifying new branches of steady state solutions to nonlinear partial differential equations. Here, we demonstrate how to extend deflation to discover new periodic orbits in nonlinear dynamical latt
Externí odkaz:
http://arxiv.org/abs/2305.17571
Autor:
Hennig, Dirk, Karachalios, Nikos I.
We prove the existence of periodic travelling wave solutions for general discrete nonlinear Klein-Gordon systems, considering both cases of hard and soft on-site potentials. In the case of hard on-site potentials we implement a fixed point theory app
Externí odkaz:
http://arxiv.org/abs/2212.05575
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Hennig, Dirk
We prove the existence of time-periodic solutions and spatially localised solutions (breathers), in general nonlinear Klein-Gordon infinite lattices. The existence problem is converted into a fixed point problem for an operator on some appropriate fu
Externí odkaz:
http://arxiv.org/abs/2103.11854
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Christov, Ognyan
In this paper we study the Klein-Gordon (KG) lattice with periodic boundary conditions. It is an $N$ degrees of freedom Hamiltonian system with linear inter-site forces and nonlinear on-site potential, which here is taken to be of the $\phi^4$ form.
Externí odkaz:
http://arxiv.org/abs/1902.03903
Autor:
Senyange, B., Skokos, Ch.
We implement several symplectic integrators, which are based on two part splitting, for studying the chaotic behavior of one- and two-dimensional disordered Klein-Gordon lattices with many degrees of freedom and investigate their numerical performanc
Externí odkaz:
http://arxiv.org/abs/1712.09408
Autor:
Christov, Ognyan
The low dimensional periodic Klein-Gordon lattices are studied for integrability. We prove that the periodic lattice with two particles and certain nonlinear potential is non integrable. However, in the cases of up to six particles, we prove that the
Externí odkaz:
http://arxiv.org/abs/1710.04136
Analyzing Chaos in Higher Order Disordered Quartic-Sextic Klein-Gordon Lattices Using $q$-Statistics
In the study of subdiffusive wave-packet spreading in disordered Klein-Gordon (KG) nonlinear lattices, a central open question is whether the motion continues to be chaotic despite decreasing densities, or tends to become quasi-periodic as nonlinear
Externí odkaz:
http://arxiv.org/abs/1705.06127
Autor:
Martin-Vergara F; Área Básica de Tecnologías de la Información y Comunicaciones, Servicio de Sistemas Informáticos, Universidad de Málaga, 29071 Málaga, Spain., Cuevas-Maraver J; Grupo de Física No Lineal, Departamento de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, 41011 Sevilla, Spain.; Instituto de Matemáticas de la Universidad de Sevilla (IMUS), Edificio Celestino Mutis, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain., Farrell PE; Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom., Villatoro FR; Escuela de Ingenierías Industriales, Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga, 29071 Málaga, Spain., Kevrekidis PG; Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515, USA.
Publikováno v:
Chaos (Woodbury, N.Y.) [Chaos] 2023 Nov 01; Vol. 33 (11).