Zobrazeno 1 - 10
of 299
pro vyhledávání: '"Kleiman S"'
Autor:
Esteves, E., Kleiman, S.
Let \omega be a Pfaff system of differential forms on a projective space. Let S be its singular locus, and Y a solution of \omega=0. We prove Y\cap S is of codimension at most 1 in Y, just as Jouanolou suspected; he proved this result assuming \omega
Externí odkaz:
http://arxiv.org/abs/math/0304148
Autor:
Esteves, E., Kleiman, S.
This paper contributes to the solution of the Poincare problem, which is to bound the degree of a (generalized algebraic) leaf of a (singular algebraic) foliation of the complex projective plane. The first theorem gives a new sort of bound, which inv
Externí odkaz:
http://arxiv.org/abs/math/0304147
Autor:
Esteves, E., Kleiman, S.
Let X be a variety over an algebraically closed field, \eta:\Omega^1_X\to L a one-dimensional singular foliation, and C\subseteq X a projective leaf of \eta. We prove that 2p_a(C)-2=\deg(L|C)+\lambda(C)-\deg(C\cap S) where p_a(C) is the arithmetic ge
Externí odkaz:
http://arxiv.org/abs/math/0209113
Autor:
Kleiman, S., Piene, R.
We continue the development of methods for enumerating nodal curves on smooth complex surfaces, stressing the range of validity. We illustrate the new methods in three important examples. First, for up to eight nodes, we confirm G\"ottsche's conjectu
Externí odkaz:
http://arxiv.org/abs/math/0111299
We sharpen the two main tools used to treat the compactified Jacobian of a singular curve: Abel maps and presentation schemes. First we prove a smoothness theorem for bigraded Abel maps. Second we study the two complementary filtrations provided by t
Externí odkaz:
http://arxiv.org/abs/math/9911069
Autor:
Kleiman, S L
This is a report on some recent work by Gaffney, Massey, and the author, characterizing the conditions A_f and W_f for a family of ICIS germs equipped with a function. First we introduce the work informally. Then we review the formal definitions of A
Externí odkaz:
http://arxiv.org/abs/math/9805062
Autor:
Kleiman, S., Thorup, A.
Let A be a Noetherian local domain, N be a finitely generated torsion- free module, and M a proper submodule that is generically equal to N. Let A[N] be an arbitrary graded overdomain of A generated as an A-algebra by N placed in degree 1. Let A[M] b
Externí odkaz:
http://arxiv.org/abs/alg-geom/9708018
Autor:
Gaffney, T., Kleiman, S.
We establish the principle of specialization of integral dependence for submodules of finite colength of free modules, as part of the general algebraic-geometric theory of the Buchsbaum--Rim multiplicity. Then we apply the principle to the study of e
Externí odkaz:
http://arxiv.org/abs/alg-geom/9610003
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kleiman, S. L., Laksov, Dan
Publikováno v:
The American Mathematical Monthly, 1972 Dec 01. 79(10), 1061-1082.
Externí odkaz:
https://www.jstor.org/stable/2317421