Zobrazeno 1 - 10
of 115
pro vyhledávání: '"Klaus Metsch"'
Publikováno v:
Bulletin of the London Mathematical Society.
Publikováno v:
Journal of Combinatorial Designs
We determine the chromatic number of the Kneser graph q{\Gamma}_{7,{3,4}} of flags of vectorial type {3, 4} of a rank 7 vector space over the finite field GF(q) for large q and describe the colorings that attain the bound. This result relies heavily,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3d95c0a43898566e283e4bbd43fadd3d
https://hdl.handle.net/1854/LU-01H25F2DBECKYTBFED5R66NYS6
https://hdl.handle.net/1854/LU-01H25F2DBECKYTBFED5R66NYS6
In this paper, oppositeness in spherical buildings is used to define an EKR-problem for flags in projective and polar spaces. A novel application of the theory of buildings and Iwahori-Hecke algebras is developed to prove sharp upper bounds for EKR-s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9c388283418acb6322c084e6e2955158
https://hdl.handle.net/20.500.14017/d8f63194-4dd6-4f11-a869-13294234fda7
https://hdl.handle.net/20.500.14017/d8f63194-4dd6-4f11-a869-13294234fda7
Autor:
Klaus Metsch
Publikováno v:
Journal of Combinatorial Theory, Series A. 191:105641
Autor:
Klaus Metsch
Publikováno v:
The Electronic Journal of Combinatorics. 28
Let $\Gamma$ be the graph whose vertices are the chambers of the finite projective space $\mathrm{PG}(3,q)$ with two vertices being adjacent when the corresponding chambers are in general position. It is known that the independence number of this gra
Autor:
Klaus Metsch, Geertrui Van de Voorde
Publikováno v:
Journal of Combinatorial Designs. 28:25-32
Autor:
Daniel Werner, Klaus Metsch
Publikováno v:
Discrete Mathematics. 342:1336-1342
We show that every x -tight set of a Hermitian polar spaces H ( 2 n , q 2 ) , n ≥ 2 , is the union of x disjoint generators of the polar space provided that x ≤ 1 2 ( q + 1 ) . This was known before only when n ∈ { 2 , 3 } . This result is a co
Autor:
Klaus Metsch
Publikováno v:
Israel Journal of Mathematics. 230:813-830
In this paper we determine the largest sets of points of finite thick buildings of type F4 such that no two points of the set are at maximal distance. The motivation for studying these sets comes from [9], where a general Erdős–Ko–Rado problem w
We determine the chromatic number of some graphs of flags in buildings of type $A_4$, namely of the Kneser graphs of flags of type $\{2,4\}$ in the vector spaces $GF(q)^5$ for $q\geq3$, and of the Kneser graph of flags of type $\{2,3\}$ in the vector
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0c1435155f0876b1aa4b0d84393c01a9
http://arxiv.org/abs/2005.05762
http://arxiv.org/abs/2005.05762
Autor:
Klaus Metsch, Stefaan De Winter
Publikováno v:
The Electronic Journal of Combinatorics. 27
We construct an infinite family of intriguing sets, or equivalently perfect 2-colorings, that are not tight in the Grassmann graph of planes of PG$(n,q)$, $n\ge 5$ odd, and show that the members of the family are the smallest possible examples if $n\