Zobrazeno 1 - 10
of 227
pro vyhledávání: '"Klügl, Franziska"'
Autor:
Uhrmacher, Adelinde, Frazier, Peter, Hähnle, Reiner, Klügl, Franziska, Lorig, Fabian, Ludäscher, Bertram, Nenzi, Laura, Ruiz-Martin, Cristina, Rumpe, Bernhard, Szabo, Claudia, Wainer, Gabriel A., Wilsdorf, Pia
Simulation has become, in many application areas, a sine-qua-non. Most recently, COVID-19 has underlined the importance of simulation studies and limitations in current practices and methods. We identify four goals of methodological work for addressi
Externí odkaz:
http://arxiv.org/abs/2310.05649
Autor:
Junges, Robert, Klügl, Franziska
Designing the agent model in a multiagent simulation is a challenging task due to the generative nature of such systems. In this contribution we present an extension to the multiagent simulation platform SeSAm, introducing a learning-based design str
Externí odkaz:
http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-29234
Autor:
Klügl, Franziska1 (AUTHOR), Nordås, Hildegunn Kyvik2,3 (AUTHOR) Hildegunn.kyvik-nordas@oru.se
Publikováno v:
Review of International Economics. Sep2024, Vol. 32 Issue 4, p1493-1520. 28p.
Autor:
UHRMACHER, ADELINDE M., FRAZIER, PETER, HÄHNLE, REINER, KLÜGL, FRANZISKA, LORIG, FABIAN, LUDÄSCHER, BERTRAM, NENZI, LAURA, RUIZ-MARTIN, CRISTINA, RUMPE, BERNHARD, SZABO, CLAUDIA, WAINER, GABRIEL, WILSDORF, PIA
Publikováno v:
ACM Transactions on Modeling & Computer Simulation; Oct2024, Vol. 34 Issue 4, p1-51, 51p
Autor:
Klügl, Franziska.
Würzburg, Universiẗat, Diss., 2000.
Erscheinungsjahr an der Haupttitelstelle: 2000.
Erscheinungsjahr an der Haupttitelstelle: 2000.
Autor:
Klügl, Franziska
Durch Zusammenführung traditioneller Methoden zur individuenbasierten Simulation und dem Konzept der Multiagentensysteme steht mit der Multiagentensimulation eine Methodik zur Verfügung, die es ermöglicht, sowohl technisch als auch konzeptionell e
Publikováno v:
Publikationer från Örebro universitet.
Agent-based Simulation Modelling focuses on the agents' decision making in their individual context. The decision making details may substantially affect the simulation outcome, and therefore need to be carefully designed. In this paper we contrast t
Publikováno v:
2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA).
Q-Networks are used in Reinforcement Learningto model the expected return from every action at a givenstate. When training Q-Networks, external reward signals arepropagated to the previously performed actions leading up toeach reward. If many actions
Autor:
Klügl, Franziska1 (AUTHOR) franziska.klugl@oru.se, Bazzan, Ana Lucia C.2 (AUTHOR) bazzan@inf.ufrgs.br, Lujak, Marin (AUTHOR), Dusparic, Ivana (AUTHOR), Vizzari, Giuseppe (AUTHOR)
Publikováno v:
AI Communications. 2021, Vol. 34 Issue 1, p105-119. 15p.
Autor:
Junges, Robert, Klügl, Franziska
Publikováno v:
In Information and Software Technology June 2012 54(6):639-649