Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Kishansingh Rajput"'
Autor:
Yasir Alanazi, Malachi Schram, Kishansingh Rajput, Steven Goldenberg, Lasitha Vidyaratne, Chris Pappas, Majdi I. Radaideh, Dan Lu, Pradeep Ramuhalli, Sarah Cousineau
Publikováno v:
Machine Learning with Applications, Vol 13, Iss , Pp 100484- (2023)
We present a multi-module framework based on Conditional Variational Autoencoder (CVAE) to detect anomalies in the power signals coming from multiple High Voltage Converter Modulators (HVCMs). We condition the model with the specific modulator type t
Externí odkaz:
https://doaj.org/article/249bc77939d846c5abae8ea3e340255d
Autor:
Steven Goldenberg, Malachi Schram, Kishansingh Rajput, Thomas Britton, Chris Pappas, Dan Lu, Jared Walden, Majdi I Radaideh, Sarah Cousineau, Sudarshan Harave
Publikováno v:
Machine Learning: Science and Technology, Vol 5, Iss 4, p 045009 (2024)
Accurate uncertainty estimations are essential for producing reliable machine learning models, especially in safety-critical applications such as accelerator systems. Gaussian process models are generally regarded as the gold standard for this task;
Externí odkaz:
https://doaj.org/article/1612fda88dd3469a9ae4adcf8f62f9f5
Autor:
Kishansingh Rajput, Malachi Schram, Willem Blokland, Yasir Alanazi, Pradeep Ramuhalli, Alexander Zhukov, Charles Peters, Ricardo Vilalta
Publikováno v:
Machine Learning: Science and Technology, Vol 5, Iss 1, p 015044 (2024)
Particle accelerators are complex and comprise thousands of components, with many pieces of equipment running at their peak power. Consequently, they can fault and abort operations for numerous reasons, lowering efficiency and science output. To avoi
Externí odkaz:
https://doaj.org/article/d3ad18216a774ffa9d295e312bb2694b
Autor:
Malachi Schram, Kishansingh Rajput, Karthik Somayaji NS, Peng Li, Jason St. John, Himanshu Sharma
Publikováno v:
Physical Review Accelerators and Beams, Vol 26, Iss 4, p 044602 (2023)
Standard deep learning methods, such as Ensemble Models, Bayesian Neural Networks, and Quantile Regression Models provide estimates of prediction uncertainties for data-driven deep learning models. However, they can be limited in their applications d
Externí odkaz:
https://doaj.org/article/d39c2b4493924709919930edadbe75f9
Autor:
Willem Blokland, Kishansingh Rajput, Malachi Schram, Torri Jeske, Pradeep Ramuhalli, Charles Peters, Yigit Yucesan, Alexander Zhukov
Publikováno v:
Physical Review Accelerators and Beams, Vol 25, Iss 12, p 122802 (2022)
High-power particle accelerators are complex machines with thousands of pieces of equipment that are frequently running at the cutting edge of technology. In order to improve the day-to-day operations and maximize the delivery of the science, new ana
Externí odkaz:
https://doaj.org/article/cdaabc593e4d422197d9b4bc329fe872
Autor:
Kishansingh Rajput
Publikováno v:
3rd ICFA Beam Dynamics Mini-Workshop on Machine Learning Applications for Particle Accelerators, Chicago, IL, November 1-4, 2022.
Autor:
Kishansingh Rajput
Publikováno v:
3rd ICFA Beam Dynamics Mini-Workshop on Machine Learning Applications for Particle Accelerators, Chicago, IL, November 1-4, 2022.
Publikováno v:
MedPulse International Journal of Anesthesiology. 16:134-137
Autor:
Majdi I. Radaideh, Chris Pappas, Jared Walden, Dan Lu, Lasitha Vidyaratne, Thomas Britton, Kishansingh Rajput, Malachi Schram, Sarah Cousineau
Publikováno v:
SSRN Electronic Journal.