Zobrazeno 1 - 10
of 341
pro vyhledávání: '"Kirsten, Klaus"'
Autor:
Kirsten, Klaus, Lee, Yoonweon
On a compact Riemannian manifold $M$ with boundary $Y$, we express the log of the zeta-determinant of the Dirichlet-to-Neumann operator acting on $q$-forms on $Y$ as the difference of the log of the zeta-determinant of the Laplacian on $q$-forms on $
Externí odkaz:
http://arxiv.org/abs/2404.14562
We consider the variation of two fundamental types of zeta functions that arise in the study of both physical and analytical problems in geometric settings involving conical singularities. These are the Barnes zeta functions and the Bessel zeta funct
Externí odkaz:
http://arxiv.org/abs/2312.02108
Autor:
Kirsten, Klaus, Lee, Yoonweon
In this paper we discuss the BFK type gluing formula for zeta-determinants of Laplacians with respect to the Robin boundary condition on a compact Riemannian manifold. As a special case, we discuss the gluing formula with respect to the Neumann bound
Externí odkaz:
http://arxiv.org/abs/2306.17572
Autor:
Kirsten, Klaus, Lee, Yoonweon
Publikováno v:
In Differential Geometry and its Applications October 2024 96
Autor:
Fucci, Guglielmo, Gesztesy, Fritz, Kirsten, Klaus, Littlejohn, Lance L., Nichols, Roger, Stanfill, Jonathan
Publikováno v:
Applicable Anal. 2021, 25p
We revisit the Krein-von Neumann extension in the case where the underlying symmetric operator is strictly positive and apply this to derive the explicit form of the Krein-von Neumann extension for singular, general (i.e., three-coefficient) Sturm-Li
Externí odkaz:
http://arxiv.org/abs/2102.00685
Publikováno v:
Res. Math. Sci. 8, No. 61 (2021), 46 pp
The principal aim in this paper is to employ a recently developed unified approach to the computation of traces of resolvents and $\zeta$-functions to efficiently compute values of spectral $\zeta$-functions at positive integers associated to regular
Externí odkaz:
http://arxiv.org/abs/2101.12295
We investigate the zeta-regularized determinant and its variation in the presence of conical singularities, boundaries, and corners. For surfaces with isolated conical singularities which may also have one or more smooth boundary components, we demon
Externí odkaz:
http://arxiv.org/abs/2010.02776
Autor:
Kirsten, Klaus, Lee, Yoonweon
In the proof of the BFK-gluing formula for zeta-determinants of Laplacians there appears a real polynomial whose constant term is an important ingredient in the gluing formula. This polynomial is determined by geometric data on an arbitrarily small c
Externí odkaz:
http://arxiv.org/abs/1912.11433
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.