Zobrazeno 1 - 10
of 57
pro vyhledávání: '"Kirschmer, Markus"'
Autor:
Kirschmer, Markus, Klüners, Jürgen
We discuss various connections between ideal classes, divisors, Picard and Chow groups of one-dimensional noetherian domains. As a result of these, we give a method to compute Chow groups of orders in global fields and show that there are infinitely
Externí odkaz:
http://arxiv.org/abs/2208.14688
Let $E$ be an ordinary elliptic curve over a finite field and $g$ be a positive integer. Under some technical assumptions, we give an algorithm to span the isomorphism classes of principally polarized abelian varieties in the isogeny class of $E^g$.
Externí odkaz:
http://arxiv.org/abs/2004.08315
Autor:
Kirschmer, Markus
We describe the determinants of the automorphism groups of hermitian lattices over local fields. Using a result of G. Shimura, this yields an explicit method to compute the special genera in a given genus of hermitian lattices over a number field.
Externí odkaz:
http://arxiv.org/abs/1904.04518
Autor:
Kirschmer, Markus, Nebe, Gabriele
We relate proper isometry classes of maximal lattices in a totally definite quaternary quadratic space (V,q) with trivial discriminant to certain equivalence classes of ideals in the quaternion algebra representing the Clifford invariant of (V,q). Th
Externí odkaz:
http://arxiv.org/abs/1705.06525
Autor:
Kirschmer, Markus, Nebe, Gabriele
We classify all one-class genera of admissible lattice chains of length at least 2 in hermitian spaces over number fields.
Externí odkaz:
http://arxiv.org/abs/1612.06713
Autor:
Kirschmer, Markus
Publikováno v:
In Journal of Number Theory April 2019 197:121-134
Autor:
Lorch, David, Kirschmer, Markus
Publikováno v:
LMS Journal of Computation and Mathematics / Volume 16 / 2013 / pp 172-186
We give an enumeration of all positive definite primitive Z-lattices in dimension >= 3 whose genus consists of a single isometry class. This is achieved by using bounds obtained from the Smith-Minkowski-Siegel mass formula to computationally construc
Externí odkaz:
http://arxiv.org/abs/1208.5638
Autor:
Kirschmer, Markus
This paper classifies the maximal finite subgroups of Sp(2n,Q) for 1 <= n <= 11 up to conjugacy in GL(2n,Q).
Externí odkaz:
http://arxiv.org/abs/0909.3989
Autor:
Kirschmer, Markus, Voight, John
We provide algorithms to count and enumerate representatives of the (right) ideal classes of an Eichler order in a quaternion algebra defined over a number field. We analyze the run time of these algorithms and consider several related problems, incl
Externí odkaz:
http://arxiv.org/abs/0808.3833
Autor:
KIRSCHMER, Markus
Publikováno v:
Journal de Théorie des Nombres de Bordeaux, 2018 Jan 01. 30(3), 847-857.
Externí odkaz:
https://www.jstor.org/stable/26608349