Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Kironmala Chanda"'
Autor:
Rajib Maity, Mohd Imran Khan, Subharthi Sarkar, Riya Dutta, Subhra Sekhar Maity, Manali Pal, Kironmala Chanda
Publikováno v:
Journal of Water and Climate Change, Vol 12, Iss 6, Pp 2774-2796 (2021)
This study explores the potential of the Deep Learning (DL) approach to develop a model for basin-scale drought assessment using information from a set of primary hydrometeorological precursors, namely air temperature, surface pressure, wind speed, r
Externí odkaz:
https://doaj.org/article/752bb8734eb9453f885d498ec3e5dc41
Publikováno v:
Meteorological Applications, Vol 27, Iss 1, Pp n/a-n/a (2020)
Abstract Hydroclimatic teleconnections between global sea surface temperature (SST) anomaly fields and monthly rainfall over east and west Japan (divided along 138° E longitude) are identified for summer (June–August) and winter (December–Februa
Externí odkaz:
https://doaj.org/article/96147a09075347f8b61657779aeac1a5
Autor:
Prabal Das, Kironmala Chanda
Publikováno v:
Stochastic Environmental Research and Risk Assessment. 37:1535-1556
Publikováno v:
Water Resources Management. 36:6043-6071
Autor:
Nehar Mandal, Kironmala Chanda
Efficient estimation and forecast of reference evapotranspiration (ETO) is crucial for water resources management and for developing an efficient irrigation practice that will help better utilization of scanty water resources. This is a more challeng
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::55ae56f23ed23450d4c82d38f62b42df
https://doi.org/10.5194/egusphere-egu23-11950
https://doi.org/10.5194/egusphere-egu23-11950
Autor:
Prabal Das, Kironmala Chanda
This article reports the findings of a recent study by Das and Chanda (2022), wherein a Bayesian Network (BN) approach was applied to analyze the influence of large-scale climate modes and local hydro-meteorological variables on streamflow and rainfa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ccb335f6e083653f025327d6642f8757
https://doi.org/10.5194/egusphere-egu23-3826
https://doi.org/10.5194/egusphere-egu23-3826
Publikováno v:
Stochastic Environmental Research and Risk Assessment.
Publikováno v:
Renewable Energy. 188:819-829
Autor:
Farizul Nizam Abdullah, U. Dinesh Acharya, Mario J. Al Sayah, Nor Eliza Alias, Wafae Allaoui, Sheikh Hefzul Bari, M. Mehdi Bateni, Nazanin Behfar, Maroua Bouteffeha, Omar-Darío Cardona, Martha Liliana Carreño, Kironmala Chanda, Rim Cherif, Elisa Coraggio, Prabal Das, Khadija Diani, Hicham El Belrhiti, Saeid Eslamian, Said Ettazarini, Soheila Farzi, Emna Gargouri-Ellouze, Fatemeh Sohrabi Geshnigani, Hüseyin Gökçekuş, Mohammad Reza Golabi, AbdelAli Gourfi, Youssef Hahou, Dawei Han, Salim Heddam, Mohammad Jamali, T.R. Jayashree, José A. Junqueira Junior, Ozgur Kisi, Saravanan Kothadaraman, Mohan Kuppusamy, Taesam Lee, Anurag Malik, Vanessa A. Mantovani, Carlos R. Mello, José M. Mello, Kaoutar Mounir, Hessam Najafi, Vahid Nourani, Nardin Jabbarian Paknezhad, Dinagarapandi Pandi, Rasnavi Paramasivam, Saeideh Parvizi, N.V. Subba Reddy, André F. Rodrigues, Yaser Sabzevari, Fahreddin Sadikoglu, Saad Shauket Sammen, Daniel Schertzer, Elnaz Sharghi, Vijay P. Singh, Doudja Souag-Gamane, Marcela C.N.S. Terra, Yazid Tikhamarine, Theo Tryfonas, Ibrahim Khalil Umar, Pierre-Antoine Versini
Publikováno v:
Handbook of Hydroinformatics ISBN: 9780128219614
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::dfae743c54c4f15e171b37ac76c2e153
https://doi.org/10.1016/b978-0-12-821961-4.09992-9
https://doi.org/10.1016/b978-0-12-821961-4.09992-9
Autor:
Kironmala Chanda, Prabal Das
Publikováno v:
Handbook of Hydroinformatics ISBN: 9780128219614
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c0977f0ba5bb1aed0208d4470d6bb0c3
https://doi.org/10.1016/b978-0-12-821961-4.00021-x
https://doi.org/10.1016/b978-0-12-821961-4.00021-x