Zobrazeno 1 - 10
of 132
pro vyhledávání: '"Kirkpatrick, Christine"'
Reproducing published deep learning papers to validate their conclusions can be difficult due to sources of irreproducibility. We investigate the impact that implementation factors have on the results and how they affect reproducibility of deep learn
Externí odkaz:
http://arxiv.org/abs/2312.06633
Six years after the seminal paper on FAIR was published, researchers still struggle to understand how to implement FAIR. For many researchers FAIR promises long-term benefits for near-term effort, requires skills not yet acquired, and is one more thi
Externí odkaz:
http://arxiv.org/abs/2301.10236
Autor:
Huerta, E. A., Blaiszik, Ben, Brinson, L. Catherine, Bouchard, Kristofer E., Diaz, Daniel, Doglioni, Caterina, Duarte, Javier M., Emani, Murali, Foster, Ian, Fox, Geoffrey, Harris, Philip, Heinrich, Lukas, Jha, Shantenu, Katz, Daniel S., Kindratenko, Volodymyr, Kirkpatrick, Christine R., Lassila-Perini, Kati, Madduri, Ravi K., Neubauer, Mark S., Psomopoulos, Fotis E., Roy, Avik, Rübel, Oliver, Zhao, Zhizhen, Zhu, Ruike
Publikováno v:
Scientific Data 10, 487 (2023)
A foundational set of findable, accessible, interoperable, and reusable (FAIR) principles were proposed in 2016 as prerequisites for proper data management and stewardship, with the goal of enabling the reusability of scholarly data. The principles w
Externí odkaz:
http://arxiv.org/abs/2210.08973
Autor:
Mazumder, Mark, Banbury, Colby, Yao, Xiaozhe, Karlaš, Bojan, Rojas, William Gaviria, Diamos, Sudnya, Diamos, Greg, He, Lynn, Parrish, Alicia, Kirk, Hannah Rose, Quaye, Jessica, Rastogi, Charvi, Kiela, Douwe, Jurado, David, Kanter, David, Mosquera, Rafael, Ciro, Juan, Aroyo, Lora, Acun, Bilge, Chen, Lingjiao, Raje, Mehul Smriti, Bartolo, Max, Eyuboglu, Sabri, Ghorbani, Amirata, Goodman, Emmett, Inel, Oana, Kane, Tariq, Kirkpatrick, Christine R., Kuo, Tzu-Sheng, Mueller, Jonas, Thrush, Tristan, Vanschoren, Joaquin, Warren, Margaret, Williams, Adina, Yeung, Serena, Ardalani, Newsha, Paritosh, Praveen, Bat-Leah, Lilith, Zhang, Ce, Zou, James, Wu, Carole-Jean, Coleman, Cody, Ng, Andrew, Mattson, Peter, Reddi, Vijay Janapa
Machine learning research has long focused on models rather than datasets, and prominent datasets are used for common ML tasks without regard to the breadth, difficulty, and faithfulness of the underlying problems. Neglecting the fundamental importan
Externí odkaz:
http://arxiv.org/abs/2207.10062
Autor:
Bourne, Philip E., Bonazzi, Vivien, Brand, Amy, Carroll, Bonnie, Foster, Ian, Guha, Ramanathan V., Hanisch, Robert, Keller, Sallie Ann, Kennedy, Mary Lee, Kirkpatrick, Christine, Mons, Barend, Nusser, Sarah M., Stebbins, Michael, Strawn, George, Szalay, Alex
On August 2, 2021 a group of concerned scientists and US funding agency and federal government officials met for an informal discussion to explore the value and need for a well-coordinated US Open Research Commons (ORC); an interoperable collection o
Externí odkaz:
http://arxiv.org/abs/2208.04682
Background: Many published machine learning studies are irreproducible. Issues with methodology and not properly accounting for variation introduced by the algorithm themselves or their implementations are attributed as the main contributors to the i
Externí odkaz:
http://arxiv.org/abs/2204.07610
Motivation: Traditional computational cluster schedulers are based on user inputs and run time needs request for memory and CPU, not IO. Heavily IO bound task run times, like ones seen in many big data and bioinformatics problems, are dependent on th
Externí odkaz:
http://arxiv.org/abs/1812.09537
Autor:
Jimenez, Luis A., White, Orane, Luther, Eric, Kirkpatrick, Christine L., Zheng, Jinjian, Gong, Xiaoyi, Liang, Xihui, Diamandopoulos, Panos, Buhler, Leah, Mowery, Mark D.
Publikováno v:
In Journal of Chromatography A 8 November 2020 1631
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.