Zobrazeno 1 - 10
of 4 692
pro vyhledávání: '"Kirk, M."'
Autor:
Mohseni, Masoud, Scherer, Artur, Johnson, K. Grace, Wertheim, Oded, Otten, Matthew, Aadit, Navid Anjum, Bresniker, Kirk M., Camsari, Kerem Y., Chapman, Barbara, Chatterjee, Soumitra, Dagnew, Gebremedhin A., Esposito, Aniello, Fahim, Farah, Fiorentino, Marco, Khalid, Abdullah, Kong, Xiangzhou, Kulchytskyy, Bohdan, Li, Ruoyu, Lott, P. Aaron, Markov, Igor L., McDermott, Robert F., Pedretti, Giacomo, Gajjar, Archit, Silva, Allyson, Sorebo, John, Spentzouris, Panagiotis, Steiner, Ziv, Torosov, Boyan, Venturelli, Davide, Visser, Robert J., Webb, Zak, Zhan, Xin, Cohen, Yonatan, Ronagh, Pooya, Ho, Alan, Beausoleil, Raymond G., Martinis, John M.
In the span of four decades, quantum computation has evolved from an intellectual curiosity to a potentially realizable technology. Today, small-scale demonstrations have become possible for quantum algorithmic primitives on hundreds of physical qubi
Externí odkaz:
http://arxiv.org/abs/2411.10406
We present a new Krylov subspace recycling method for solving a linear system of equations, or a sequence of slowly changing linear systems. Our approach is to reduce the computational overhead of recycling techniques while still benefiting from the
Externí odkaz:
http://arxiv.org/abs/2311.14206
We consider approximating solutions to parameterized linear systems of the form $A(\mu_1,\mu_2) x(\mu_1,\mu_2) = b$, where $(\mu_1, \mu_2) \in \mathbb{R}^2$. Here the matrix $A(\mu_1,\mu_2) \in \mathbb{R}^{n \times n}$ is nonsingular, large, and spar
Externí odkaz:
http://arxiv.org/abs/2309.14178
The multigrid V-cycle method is a popular method for solving systems of linear equations. It computes an approximate solution by using smoothing on fine levels and solving a system of linear equations on the coarsest level. Solving on the coarsest le
Externí odkaz:
http://arxiv.org/abs/2306.06182
Autor:
McGranaghan, R. M., Thompson, B., Camporeale, E., Bortnik, J., Bobra, M., Lapenta, G., Wing, S., Poduval, B., Lotz, S., Murray, S., Kirk, M., Chen, T. Y., Bain, H. M., Riley, P., Tremblay, B., Cheung, M., Delouille, V.
Three main points: 1. Data Science (DS) will be increasingly important to heliophysics; 2. Methods of heliophysics science discovery will continually evolve, requiring the use of learning technologies [e.g., machine learning (ML)] that are applied ri
Externí odkaz:
http://arxiv.org/abs/2212.13325
We derive an augmented Krylov subspace method with subspace recycling for computing a sequence of matrix function applications on a set of vectors. The matrix is either fixed or changes as the sequence progresses. We assume consecutive matrices are c
Externí odkaz:
http://arxiv.org/abs/2209.14163
Autor:
Burke, Liam, Soodhalter, Kirk M.
Augmented Krylov subspace methods aid in accelerating the convergence of a standard Krylov subspace method by including additional vectors in the search space. A residual projection framework based on residual (Petrov-) Galerkin constraints was prese
Externí odkaz:
http://arxiv.org/abs/2206.12315