Zobrazeno 1 - 10
of 197
pro vyhledávání: '"Kirillov, O."'
Publikováno v:
Phys.Rev.Lett.106:150403,2011
We report on the experimental study of an exceptional point (EP) in a dissipative microwave billiard with induced time-reversal invariance (T) violation. The associated two-state Hamiltonian is non-Hermitian and non-symmetric. It is determined experi
Externí odkaz:
http://arxiv.org/abs/1008.2623
Autor:
Hoveijn, I., Kirillov, O. N.
Publikováno v:
Journal of Differential Equations, 248, 2585--2607 (2010)
We study the linear differential equation x' = Lx in 1:1 resonance. That is, x in R^4 and L is a 4 by 4 matrix with a semi-simple double pair of imaginary eigenvalues (ib,-ib,ib,-ib). We wish to find all perturbations of this linear system such that
Externí odkaz:
http://arxiv.org/abs/0911.1224
Autor:
Kirillov, O. E.
Publikováno v:
Lobachevskii Journal of Mathematics; May2024, Vol. 45 Issue 5, p2058-2066, 9p
Publikováno v:
Phys. Rev A 72, 014104 (2005)
A wave function picks up, in addition to the dynamic phase, the geometric (Berry) phase when traversing adiabatically a closed cycle in parameter space. We develop a general multidimensional theory of the geometric phase for (double) cycles around ex
Externí odkaz:
http://arxiv.org/abs/quant-ph/0501040
Publikováno v:
J. Phys. A: Math. Gen. 38 (2005) 1723-1740.
The paper presents a general theory of coupling of eigenvalues of complex matrices of arbitrary dimension depending on real parameters. The cases of weak and strong coupling are distinguished and their geometric interpretation in two and three-dimens
Externí odkaz:
http://arxiv.org/abs/math-ph/0411024
Publikováno v:
J. Phys. A: Math. Gen. 38 (2005) 5531--5546
The paper presents a new theory of unfolding of eigenvalue surfaces of real symmetric and Hermitian matrices due to an arbitrary complex perturbation near a diabolic point. General asymptotic formulae describing deformations of a conical surface for
Externí odkaz:
http://arxiv.org/abs/math-ph/0411006
Autor:
Kirillov, O. N.
Publikováno v:
Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2013 Apr . 371(1989), 1-21.
Externí odkaz:
http://dx.doi.org/10.1098/rsta.2012.0051
Autor:
Kirillov, O. E.
Publikováno v:
Lobachevskii Journal of Mathematics; May2023, Vol. 44 Issue 5, p1714-1720, 7p
Autor:
Kirillov, O. N.1 o.kirillov@hzdr.de
Publikováno v:
Journal of Mathematical Sciences. Dec2018, Vol. 235 Issue 4, p455-472. 18p.
Autor:
Kirillov, O. N.
Publikováno v:
Proceedings: Mathematical, Physical and Engineering Sciences, 2009 Sep 01. 465(2109), 2703-2723.
Externí odkaz:
https://www.jstor.org/stable/30243405