Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Kiran Rama"'
Publikováno v:
Neural Computing and Applications. 33:14167-14177
We propose “Deep Autoencoders for Feature Learning in Recommender Systems,” a novel discriminative model based on the incorporation of features from autoencoders in combination with embeddings into a deep neural network to predict ratings in reco
Autor:
Jayaprakash Narashimman, Pugazhenthi Periasamy, Mahendran Ganesamoorthy, Thiruvarul PV, Kiran Ramapurath
Publikováno v:
Asian Journal of Medical Sciences, Vol 15, Iss 7, Pp 182-185 (2024)
Background: The treatment of lower calyceal calculi with a size
Externí odkaz:
https://doaj.org/article/dc0c81d530944ae8aa31765723cecb4d
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
A Modified Bayesian Optimization based Hyper-Parameter Tuning Approach for Extreme Gradient Boosting
Autor:
Sayan Putatunda, Kiran Rama
Publikováno v:
2019 Fifteenth International Conference on Information Processing (ICINPRO).
It is already reported in the literature that the performance of a machine learning algorithm is greatly impacted by performing proper Hyper-Parameter optimization. One of the ways to perform Hyper-Parameter optimization is by manual search but that
Autor:
Sayan Putatunda, Kiran Rama
Publikováno v:
SPML
The impact of Hyper-Parameter optimization on the performance of a machine learning algorithm has been proved both theoretically and empirically by many studies reported in the literature. It is a tedious and a time-consuming task if one goes for Man
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Machine Learning and Data Mining in Pattern Recognition ISBN: 9783319624150
MLDM
Advances in Data Mining. Applications and Theoretical Aspects ISBN: 9783319627007
ICDM
MLDM
Advances in Data Mining. Applications and Theoretical Aspects ISBN: 9783319627007
ICDM
The rise of Digital B2B Marketing has presented us with new opportunities and challenges as compared to traditional e-commerce. B2B setup is different from B2C setup in many ways. Along with the contrasting buying entity (company vs. individual), the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f974356e2170c86dd4cd8ce4cb13fdc
https://doi.org/10.1007/978-3-319-62416-7_8
https://doi.org/10.1007/978-3-319-62416-7_8
Publikováno v:
Journal of Open Source Software. 4:1509
This paper introduces SmartEDA, which is an R package for performing Exploratory data analysis (EDA). EDA is generally the first step that one needs to perform before developing any machine learning or statistical models. The goal of EDA is to help s
Autor:
K. Raghava Rau, Kiran Rama, John Kiran, Shashank Shekhar, Sam Pritchett, Anit Bhandari, Parag Chitalia
Publikováno v:
Machine Learning and Data Mining in Pattern Recognition ISBN: 9783319419190
ICDM
Advances in Data Mining. Applications and Theoretical Aspects ISBN: 9783319415604
ICDM
Advances in Data Mining. Applications and Theoretical Aspects ISBN: 9783319415604
There are many data mining solutions in the market which cater to solving pricing problems to various sectors in the business industry. The goal of such solutions is not only to give an optimum pricing but also maximize earnings of the customer. This
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8674bf7189a27150b2d068f9bc5b4ff3
https://doi.org/10.1007/978-3-319-41920-6_7
https://doi.org/10.1007/978-3-319-41920-6_7
Publikováno v:
Recent Developments & New Direction in Soft-Computing Foundations & Applications; 2016, p301-314, 14p