Zobrazeno 1 - 10
of 239
pro vyhledávání: '"Kim, Youngjoo"'
Sharpened dimensionality reduction (SDR), which belongs to the class of multidimensional projection techniques, has recently been introduced to tackle the challenges in the exploratory and visual analysis of high-dimensional data. SDR has been applie
Externí odkaz:
http://arxiv.org/abs/2202.11667
Applying dimensionality reduction (DR) to large, high-dimensional data sets can be challenging when distinguishing the underlying high-dimensional data clusters in a 2D projection for exploratory analysis. We address this problem by first sharpening
Externí odkaz:
http://arxiv.org/abs/2110.00317
Autor:
Kim, Youngjoo
This paper proposes a novel approach to map-based navigation system for unmanned aircraft. The proposed system attempts label-to-label matching, not image-to-image matching, between aerial images and a map database. The ground objects can be labelled
Externí odkaz:
http://arxiv.org/abs/2107.00689
Autor:
Kim, Youngjoo
Older people are as diverse a group as they were as younger people. Home environments should reflect these diverse individuals' varying interests, preferences, and needs. In spite of efforts to remain independent and at home, some elderly people have
Externí odkaz:
http://hdl.handle.net/10919/27868
http://scholar.lib.vt.edu/theses/available/etd-05242002-000656/
http://scholar.lib.vt.edu/theses/available/etd-05242002-000656/
Publikováno v:
IEEE Sensors Journal, vol. 19, issue. 23, pp. 11359 - 11366, 2019
This paper presents a scalable deep learning approach for short-term traffic prediction based on historical traffic data in a vehicular road network. Capturing the spatio-temporal relationship of the big data often requires a significant amount of co
Externí odkaz:
http://arxiv.org/abs/2103.02578
Deep neural networks have recently demonstrated the traffic prediction capability with the time series data obtained by sensors mounted on road segments. However, capturing spatio-temporal features of the traffic data often requires a significant num
Externí odkaz:
http://arxiv.org/abs/1902.06506
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kim, Youngjoo, Bang, Hyochoong
This study proposes an airborne multisensor management algorithm for target tracking, taking each of multiple unmanned aircraft as a sensor. The purpose of the algorithm is to determine the configuration of the sensor deployment and to guide the mobi
Externí odkaz:
http://arxiv.org/abs/1807.08531
This paper proposes a deep learning approach for traffic flow prediction in complex road networks. Traffic flow data from induction loop sensors are essentially a time series, which is also spatially related to traffic in different road segments. The
Externí odkaz:
http://arxiv.org/abs/1807.10603