Zobrazeno 1 - 10
of 80
pro vyhledávání: '"Kim, Yeon Hyang"'
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 February 2025 542(2)
Autor:
Raj, Mayank, Jaiswal, Ajay, R, Rohit R., Gupta, Ankita, Sahoo, Sudeep Kumar, Srivastava, Vertika, Kim, Yeon Hyang
This paper describes our system (Solomon) details and results of participation in the SemEval 2020 Task 11 "Detection of Propaganda Techniques in News Articles"\cite{DaSanMartinoSemeval20task11}. We participated in Task "Technique Classification" (TC
Externí odkaz:
http://arxiv.org/abs/2009.07473
Autor:
Aceska, Roza, Kim, Yeon Hyang
Let $A$ be an operator on {a separable } Hilbert space $\cH$, and let $G \subset \cH$. It is known that - under appropriate conditions on $A$ and $G$ - the set of iterations $F_G(A)= \{A^j \gbf \; | \; \gbf \in G, \; 0 \leq j \leq L(\gbf) \} $ is a f
Externí odkaz:
http://arxiv.org/abs/1608.05622
Autor:
Chan, Alice, Domagalski, Rachel, Kim, Yeon Hyang, Narayan, Sivaram K., Suh, Hong, Zhang, Xingyu
For a unit-norm frame $F = \{f_i\}_{i=1}^k$ in $\R^n$, a scaling is a vector $c=(c(1),\dots,c(k))\in \R_{\geq 0}^k$ such that $\{\sqrt{c(i)}f_i\}_{i =1}^k$ is a Parseval frame in $\R^n$. If such a scaling exists, $F$ is said to be scalable. A scaling
Externí odkaz:
http://arxiv.org/abs/1508.02266
Autor:
Kim, Yeon Hyang.
Thesis (Ph.D.)-- University of Wisconsin--Madison, 2008.
Includes bibliographical references (p. 78-81).
Includes bibliographical references (p. 78-81).
Autor:
Berry, Kileen, Copenhaver, Martin S., Evert, Eric, Kim, Yeon Hyang, Klingler, Troy, Narayan, Sivaram K., Nghiem, Son T.
Publikováno v:
Involve 9 (2016) 237-248
We consider frames in a finite-dimensional Hilbert space where frames are exactly the spanning sets of the vector space. A factor poset of a frame is defined to be a collection of subsets of $I$, the index set of our vectors, ordered by inclusion so
Externí odkaz:
http://arxiv.org/abs/1411.4164
Autor:
Copenhaver, Martin S., Kim, Yeon Hyang, Logan, Cortney, Mayfield, Kyanne, Narayan, Sivaram K., Sheperd, Jonathan
We consider frames in a finite-dimensional Hilbert space Hn where frames are exactly the spanning sets of the vector space. We present a method to determine the maximum robustness of a frame. We present results on tight subframes and surgery of frame
Externí odkaz:
http://arxiv.org/abs/1303.1163
Autor:
Copenhaver, Martin S., Kim, Yeon Hyang, Logan, Cortney, Mayfield, Kyanne, Narayan, Sivaram K., Petro, Matthew J., Sheperd, Jonathan
We consider frames in a finite-dimensional Hilbert space Hn where frames are exactly the spanning sets of the vector space. The diagram vector of a vector in R2 was previously defined using polar coordinates and was used to characterize tight frames
Externí odkaz:
http://arxiv.org/abs/1303.1159
Publikováno v:
In NeuroImage December 2018 183:836-846
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.