Zobrazeno 1 - 10
of 86
pro vyhledávání: '"Kim, Inwon C."'
We consider a toy model of rate independent droplet motion on a surface with contact angle hysteresis based on the one-phase Bernoulli free boundary problem. We introduce a notion of solutions based on an obstacle problem. These solutions jump ``as l
Externí odkaz:
http://arxiv.org/abs/2410.06931
We prove the global-time existence of weak solutions to the supercooled Stefan problem. Our result holds in general space dimensions and with a general class of initial data. In addition, our solution is maximal in the sense of a certain stochastic o
Externí odkaz:
http://arxiv.org/abs/2402.17154
We introduce a toy model for rate-independent droplet motion on a surface with contact angle hysteresis based on the one-phase Bernoulli free boundary problem. We consider a notion of energy solutions and show existence by a minimizing movement schem
Externí odkaz:
http://arxiv.org/abs/2310.03656
The Ising model of statistical physics has served as a keystone example of phase transitions, thermodynamic limits, scaling laws, and many other phenomena and mathematical methods. We introduce and explore an Ising game, a variant of the Ising model
Externí odkaz:
http://arxiv.org/abs/2301.00851
Autor:
Kim, Inwon C., Kim, Young-Heon
We formulate and solve a free target optimal Brownian stopping problem from a given distribution while the target distribution is free and is conditioned to satisfy a given density height constraint. The free target optimization problem exhibits mono
Externí odkaz:
http://arxiv.org/abs/2110.03831
Autor:
Choi Sunhi, Kim Inwon C.
Publikováno v:
Advanced Nonlinear Studies, Vol 23, Iss 1, Pp 293-332 (2023)
We consider a nonlinear Neumann problem, with periodic oscillation in the elliptic operator and on the boundary condition. Our focus is on problems posed in half-spaces, but with general normal directions that may not be parallel to the directions of
Externí odkaz:
https://doaj.org/article/73b2ab6aa47b400aa04333a647e07728
Autor:
Feldman, William M., Kim, Inwon C.
We consider a liquid drop sitting on a rough solid surface at equilibrium, a volume constrained minimizer of the total interfacial energy. The large-scale shape of such a drop strongly depends on the micro-structure of the solid surface. Surface roug
Externí odkaz:
http://arxiv.org/abs/1612.07261
The mathematical modeling of tumor growth leads to singular stiff pressure law limits for porous medium equations with a source term. Such asymptotic problems give rise to free boundaries, which, in the absence of active motion, are generalized Hele-
Externí odkaz:
http://arxiv.org/abs/1507.00796
Autor:
Feldman, William M., Kim, Inwon C.
We investigate the continuity properties of the homogenized boundary data $\overline{g}$ for oscillating Dirichlet boundary data problems. We show that, for a generic non-rotation-invariant operator and boundary data, $\overline{g}$ is discontinuous
Externí odkaz:
http://arxiv.org/abs/1502.00966
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.