Zobrazeno 1 - 10
of 382
pro vyhledávání: '"Kim, Hosung"'
Autor:
Li, Zhuoshuo, Zhang, Jiong, Zeng, Youbing, Lin, Jiaying, Zhang, Dan, Zhang, Jianjia, Xu, Duan, Kim, Hosung, Liu, Bingguang, Liu, Mengting
Current brain surface-based prediction models often overlook the variability of regional attributes at the cortical feature level. While graph neural networks (GNNs) excel at capturing regional differences, they encounter challenges when dealing with
Externí odkaz:
http://arxiv.org/abs/2411.05825
In this paper, we study the property of bigness of the tangent bundle of a smooth projective rational surface with nef anticanonical divisor. We first show that the tangent bundle $T_S$ of $S$ is not big if $S$ is a rational elliptic surface. We then
Externí odkaz:
http://arxiv.org/abs/2408.14411
Autor:
Kim, Hosung, Lee, Yongnam
In this paper, we show that there is a natural Lagrangian fibration structure on the map $\Phi$ from the cotangent bundle of a del Pezzo surface $X$ of degree 4 to $\mathbb C^2$. Moreover, we describe explicitly all level surfaces of the above natura
Externí odkaz:
http://arxiv.org/abs/2210.01317
Autor:
Wu, Xiaotong, Xie, Chenxin, Cheng, Fangxiao, Li, Zhuoshuo, Li, Ruizhuo, Xu, Duan, Kim, Hosung, Zhang, Jianjia, Liu, Hongsheng, Liu, Mengting
Publikováno v:
In NeuroImage 15 October 2024 300
Publikováno v:
In Sleep Medicine September 2024 121:69-76
In this paper, we study the positivity property of the tangent bundle $T_X$ of a Fano threefold $X$ with Picard number 2. We determine the bigness of the tangent bundle of the whole 36 deformation types. Our result shows that $T_X$ is big if and only
Externí odkaz:
http://arxiv.org/abs/2201.06351
Autor:
Kim, Hosung, Lee, Yongnam
A congruence is a surface in the Grassmannian ${\rm Gr}(2, 4)$. In this paper, we consider the normalization of congruence of bitangents to a hypersurface in $\mathbb P^3$. We call it the Fano congruence of bitangents. We give a criterion for smoothn
Externí odkaz:
http://arxiv.org/abs/2109.07655
Autor:
Kim, HoSung, Lee, Seungchul, Ko, Young-Ho, Ahn, Joon Tae, Kim, Kap-Joong, Kim, Duk-Jun, Geum, Dae-Myeong, Han, Won Seok
Publikováno v:
In Journal of Alloys and Compounds 5 May 2024 983
Publikováno v:
In Sleep Medicine February 2024 114:211-219
Autor:
Kim, Hosung, Lee, Yongnam
Let $X$ be a double cover of $\mathbb P^3$ branched along a sextic surface $Y$. In this paper, we show that, for general $X$, the Abel-Jacobi map associated to the normalization $\tilde F(X)$ of the surface $F(X)$ of curves contained in $X$ which are
Externí odkaz:
http://arxiv.org/abs/2005.09231