Zobrazeno 1 - 10
of 186
pro vyhledávání: '"Kim, Daeyeoul"'
In this paper, we prove new identities for Bernoulli polynomials that extend Alzer and Kwong's results. The key idea is to use the Volkenborn integral over $\mathbb Z_p$ of the Bernoulli polynomials to establish recurrence relations on the integrands
Externí odkaz:
http://arxiv.org/abs/2005.03874
The classical Menon's identity [7] states that \begin{equation*}\label{oldbegin1} \sum_{\substack{a\in\Bbb Z_n^\ast }}\gcd(a -1,n)=\varphi(n) \sigma_{0} (n), \end{equation*} where for a positive integer $n$, $\Bbb Z_n^\ast$ is the group of units of t
Externí odkaz:
http://arxiv.org/abs/1802.00531
Publikováno v:
Open Mathematics, Vol 20, Iss 1, Pp 341-365 (2022)
The aim of this paper is to find arithmetic convolution sums of some restricted divisor functions. When divisors of a certain natural number satisfy a suitable condition for modulo 12, those restricted divisor functions are expressed by the coefficie
Externí odkaz:
https://doaj.org/article/362cf16dc69c415b8320527a3f0f1a18
Publikováno v:
Applicable Analysis and Discrete Mathematics, 2020 Dec 01. 14(3), 719-728.
Externí odkaz:
https://www.jstor.org/stable/26964991
Publikováno v:
Applicable Analysis and Discrete Mathematics, 2020 Dec 01. 14(3), 641-653.
Externí odkaz:
https://www.jstor.org/stable/26964985
The Hurwitz-type Euler zeta function is defined as a deformation of the Hurwitz zeta function: \begin{equation*} \zeta_E(s,x)=\sum_{n=0}^\infty\frac{(-1)^n}{(n+x)^s}. \end{equation*} In this paper, by using the method of Fourier expansions, we shall
Externí odkaz:
http://arxiv.org/abs/1508.04084
The Apostol-Dedekind sum with quasi-periodic Euler functions is an analogue of Apostol's definition of the generalized Dedekind sum with periodic Bernoulli functions. In this paper, using the Boole summation formula, we shall obtain the reciprocity f
Externí odkaz:
http://arxiv.org/abs/1508.02588
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Using the Jackson integral, we obtain the $q$-integral analogue of the Raabe type formulas for Barnes multiple Hurwitz-Lerch zeta functions and Barnes and Vardi's multiple gamma functions. Our results generalize $q$-integral analogue of the Raabe typ
Externí odkaz:
http://arxiv.org/abs/1408.3243
Autor:
Kim, Daeyeoul, Simsek, Yilmaz
Publikováno v:
AIP Conference Proceedings; 2024, Vol. 3094 Issue 1, p1-4, 4p