Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Kilicer, Pinar"'
Autor:
Ionica, Sorina, Kiliçer, Pinar, Lauter, Kristin, García, Elisa Lorenzo, Mânzăţeanu, Adelina, Vincent, Christelle
In this paper we introduce a new problem called the Isogenous Embedding Problem (IEP). The existence of solutions to this problem is related to the primes of bad reduction of CM curves of genus $3$ and we can detect potentially good reduction in abse
Externí odkaz:
http://arxiv.org/abs/2212.14083
Autor:
Bouw, Irene, Coppola, Nirvana, Kılıçer, Pınar, Kunzweiler, Sabrina, García, Elisa Lorenzo, Somoza, Anna
Publikováno v:
In: Women in numbers Europe III - research directions in number theory, Assoc. Women Math. Ser., 24, 115-162, 2021
We study a 3-dimensional stratum $\mathcal{M}_{3,V}$ of the moduli space $\mathcal{M}_3$ of curves of genus $3$ parameterizing curves $Y$ that admit a certain action of $V= C_2\times C_2$. We determine the possible types of the stable reduction of th
Externí odkaz:
http://arxiv.org/abs/2003.07633
Autor:
Kilicer, Pinar
Soit E une courbe elliptique sur C ayant multiplication complexe (CM) par l’ordre maximal OK d’un corps quadratique imaginaire K. Le premier théorème principal de la multiplication complexe affirme que le corps K(j(E)), obtenu en adjoignant à
Externí odkaz:
http://www.theses.fr/2016BORD0046/document
Autor:
Ionica, Sorina, Kilicer, Pinar, Lauter, Kristin, Garcia, Elisa Lorenzo, Massierer, Maike, Manzateanu, Adelina, Vincent, Christelle
Publikováno v:
Research in Number Theory, SpringerOpen, 2019, 5 (1), pp.article n. 9
In this article we prove an analogue of a theorem of Lachaud, Ritzenthaler, and Zykin, which allows us to connect invariants of binary oc-tics to Siegel modular forms of genus 3. We use this connection to show that certain modular functions, when res
Externí odkaz:
http://arxiv.org/abs/1807.08986
We give a bound on the primes dividing the denominators of invariants of Picard curves of genus 3 with complex multiplication. Unlike earlier bounds in genus 2 and 3, our bound is based not on bad reduction of curves, but on a very explicit type of g
Externí odkaz:
http://arxiv.org/abs/1801.04682
Autor:
Kılıçer, Pınar, Labrande, Hugo, Lercier, Reynald, Ritzenthaler, Christophe, Sijsling, Jeroen, Streng, Marco
Publikováno v:
Acta Arith. 185 (2018), no. 2, 127-156
We give examples of smooth plane quartics over $\mathbb{Q}$ with complex multiplication over $\overline{\mathbb{Q}}$ by a maximal order with primitive CM type. We describe the required algorithms as we go, these involve the reduction of period matric
Externí odkaz:
http://arxiv.org/abs/1701.06489
Autor:
Kılıçer, Pınar, Lauter, Kristin, García, Elisa Lorenzo, Newton, Rachel, Ozman, Ekin, Streng, Marco
We give bounds on the primes of geometric bad reduction for curves of genus three of primitive CM type in terms of the CM orders. In the case of genus one, there are no primes of geometric bad reduction because CM elliptic curves are CM abelian varie
Externí odkaz:
http://arxiv.org/abs/1609.05826
Autor:
Kilicer, Pinar, Streng, Marco
The CM class number one problem for elliptic curves asked to find all elliptic curves defined over the rationals with non-trivial endomorphism ring. For genus-2 curves it is the problem of determining all CM curves of genus $2$ defined over the refle
Externí odkaz:
http://arxiv.org/abs/1511.04869
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.