Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Kikuchi, Kengo"'
Publikováno v:
The European Physical Journal C volume 83, Article number: 462 (2023)
The gauge-invariant two-point function of the Higgs field at the same spacetime point can make a natural gauge-invariant order parameter for spontaneous gauge symmetry breaking. However, this composite operator is ultraviolet divergent and is not wel
Externí odkaz:
http://arxiv.org/abs/2303.10841
Publikováno v:
Phys.Rev.D 107 (2023) 12, 125015
We investigate an interacting supersymmetric gradient flow in the Wess-Zumino model. Thanks to the nonrenormalization theorem and an appropriate initial condition, we find that any correlator of flowed fields is ultraviolet finite. This is shown at a
Externí odkaz:
http://arxiv.org/abs/2302.06955
Autor:
Hamada, Yu, Kikuchi, Kengo
Publikováno v:
Phys. Rev. D 101, 096014 (2020)
We propose a formalism to obtain the electroweak sphaleron, which is one of the static classical solutions, using the gradient flow method. By adding a modification term to the gradient flow equation, we can obtain the sphaleron configuration as a st
Externí odkaz:
http://arxiv.org/abs/2003.02070
Publikováno v:
Phys. Rev. D 100, 014501 (2019)
We propose a supersymmetric gradient flow equation in the four-dimensional Wess-Zumino model. The flow is constructed in two ways. One is based on the off-shell component fields and the other is based on the superfield formalism, in which the same re
Externí odkaz:
http://arxiv.org/abs/1904.06582
We study the flow equation for the $\mathcal{N}=1$ supersymmetric $O(N)$ nonlinear sigma model in two dimensions, which cannot be given by the gradient of the action, as evident from dimensional analysis. Imposing the condition on the flow equation t
Externí odkaz:
http://arxiv.org/abs/1704.03717
Publikováno v:
PoS (LATTICE 2015) 299
We propose a method to give a $d+1$ geometry from a $d$ dimensional quantum field theory in the large N expansion. We first construct a $d+1$ dimensional field from the $d$ dimensional one using the gradient flow equation, whose flow time $t$ represe
Externí odkaz:
http://arxiv.org/abs/1606.07617
We propose a generalization of the gradient flow equation for quantum field theories with nonlinearly realized symmetry. Applying the equation to $\mathcal{N}=1$ $SU(N)$ super Yang-Mills theory in four dimensions, we construct a supersymmetric extens
Externí odkaz:
http://arxiv.org/abs/1511.06561
We propose a method to define a $d+1$ dimensional geometry from a $d$ dimensional quantum field theory in the $1/N$ expansion. We first construct a $d+1$ dimensional field theory from the $d$ dimensional one via the gradient flow equation, whose flow
Externí odkaz:
http://arxiv.org/abs/1505.00131
Publikováno v:
JHEP 1504 (2015) 156
We study the gradient flow equation for the O(N) nonlinear sigma model in two dimensions at large N. We parameterize solution of the field at flow time t in powers of bare fields by introducing the coefficient function X_n for the n-th power term (n=
Externí odkaz:
http://arxiv.org/abs/1412.8249
Autor:
Kikuchi, Kengo, Onogi, Tetsuya
We generalize the gradient flow equation for field theories with nonlinearly realized symmetry. Applying the formalism to super Yang-Mills theory, we construct a supersymmetric extension of the gradient flow equation. It can be shown that the super g
Externí odkaz:
http://arxiv.org/abs/1408.2185