Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Kidjegbo Augustin Toure"'
Publikováno v:
International Journal of Analysis and Applications, Vol 17, Iss 6, Pp 1034-1051 (2019)
In this paper, we study a numerical approximation of the following problem ut = uxx, vt = vxx, 0 < x < 1, 0 < t < T; ux(0, t) = u−m(0, t) + v−p(0, t), vx(0, t) = u−q (0, t) + v−n(0, t) and ux(1, t) = vx(1, t) = 0, 0 < t < T, where m, p, q and
Externí odkaz:
https://doaj.org/article/ecf21566b92d408b9c03b0bf51af6fe7
Publikováno v:
Advances in Mathematics: Scientific Journal. :151-171
In this paper, we study numerical approximations for positive solutions of a semilinear heat equations, $u_{t}=u_{xx}+u^{p}$, in a bounded interval $(0,1)$, with a nonlinear flux boundary condition at the boundary $u_{x}(0,t)=0$, $u_{x}(1,t)=-u^{-q}(
Publikováno v:
Journal of Nonlinear Sciences and Applications. 13:65-74
Publikováno v:
Far East Journal of Mathematical Sciences (FJMS). 117:119-138
Publikováno v:
Journal of Numerical Analysis and Approximation Theory, Vol 53, Iss 1 (2024)
In this work, we numerically study the influence of control parameters on the stabilization of a flexible Euler-Bernoulli beam fixed at one end and subjected at the other end to a force control and a punctual moment control proportional respectively
Externí odkaz:
https://doaj.org/article/87701c42f0094b78afbf5bbe8a9a94c7
Publikováno v:
Journal of Numerical Analysis and Approximation Theory, Vol 52, Iss 2 (2023)
In this paper, we study numerical approximations of a semilinear parabolic problem in one-dimension, of which the nonlinearity appears both in source term and in Neumann boundary condition. By a semidiscretization using finite difference method, we o
Externí odkaz:
https://doaj.org/article/59afe305e3e443899ac3de07455ce8c4
Publikováno v:
Journal of Mathematics Research. 11:1
This paper deals with the study of the numerical approximation for the following semilinear equation with a nonlinear absorption term ut = uxx− λup, 0 < x < 1, t > 0, and a nonlinear flux boundary condition ux(0,t) = 0, ux(1,t) = uq(1,t), t > 0. W
Publikováno v:
Journal of Mathematics Research. 10:119
We study numerical approximations of solutions of a heat equation with nonlinear boundary conditions which produce blow-up of the solutions. By a semidiscretization using a finite difference scheme in the space variable we get a system of ordinary di