Zobrazeno 1 - 10
of 2 305
pro vyhledávání: '"Kicked Rotor"'
Autor:
Sales, Matheus Rolim, Mugnaine, Michele, Leonel, Edson Denis, Caldas, Iberê L., Szezech Jr, José Danilo
An interesting feature in dissipative nonlinear systems is the emergence of characteristic domains in parameter space that exhibit periodic temporal evolution, known as shrimp-shaped domains. We investigate the parameter space of the dissipative asym
Externí odkaz:
http://arxiv.org/abs/2408.07167
Autor:
Zou, Zhixing, Wang, Jiao
Publikováno v:
SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 67, Issue 3, 2024
In this study, we propose a generalized pseudoclassical theory for the kicked rotor model in an attempt to discern the footprints of the classical dynamics in the deep quantum regime. Compared with the previous pseudoclassical theory that applies onl
Externí odkaz:
http://arxiv.org/abs/2401.15823
Autor:
MAŠOVIĆ, D.1 dragmasovic@gmail.com
Publikováno v:
Acta Physica Polonica: A. Sep2024, Vol. 146 Issue 3, p295-303. 9p.
Autor:
Bolik, Nikolai, Wimberger, Sandro
Publikováno v:
Phys. Rev. A 109, 063307 (2024)
Quantum walks have gained significant attention over the past decades, mainly because of their variety of implementations and applications. Atomic quantum walks are typically subject to spontaneous emissions arising from the control fields. We invest
Externí odkaz:
http://arxiv.org/abs/2402.13218
Autor:
Li, Guanling, Zhao, Wen-Lei
We investigate both theoretically and numerically the dynamics of Out-of-Time-Ordered Correlators (OTOCs) in quantum resonance condition for a kicked rotor model. We employ various operators to construct OTOCs in order to thoroughly quantify their co
Externí odkaz:
http://arxiv.org/abs/2401.11057
Autor:
Shi, Yunfeng, Wen, Li
Publikováno v:
Journal of Differential Equations, Volume 355, 15 May 2023, Pages 334-368
In this paper we study the lattice quasi-periodic operators with power-law long-range hopping and meromorphic monotone potentials, and diagonalize the operators via a Nash-Moser iteration scheme. As applications, we obtain uniform power-law localizat
Externí odkaz:
http://arxiv.org/abs/2310.10514
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Gupta, Varsha
In this work, we study quantum chaos by focusing on the evolution of initially close states in the dynamics of the Quantum Kicked Rotor (QKR). We propose a novel measure, the Quantum Lyapunov Exponent (QLE), to quantify the degree of chaos in this qu
Externí odkaz:
http://arxiv.org/abs/2307.01461
Publikováno v:
Phys. Rev. E 109, 034206, Published 13 March 2024
Despite the periodic kicks, a linear kicked rotor (LKR) is an integrable and exactly solvable model in which the kinetic energy term is linear in momentum. It was recently shown that spatially interacting LKRs are also integrable, and results in dyna
Externí odkaz:
http://arxiv.org/abs/2304.08899
One major objective of controlling classical chaotic dynamical systems is exploiting the system's extreme sensitivity to initial conditions in order to arrive at a predetermined target state. In a recent letter [Phys.~Rev.~Lett. 130, 020201 (2023)],
Externí odkaz:
http://arxiv.org/abs/2305.14187