Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Kiat Tat Qua"'
Publikováno v:
Asian-European Journal of Mathematics.
Let [Formula: see text] denote the set of all distinct centralizers in a ring [Formula: see text]. A ring [Formula: see text] is said to be [Formula: see text]-centralizer ring if [Formula: see text], where [Formula: see text]. In this paper, we illu
Publikováno v:
Analele Ştiinţifice ale Universităţii 'Al.I. Cuza' din Iaşi. Matematică; 2023, Vol. 69 Issue 2, p133-142, 10p
Autor:
Angelina Yan Mui Chin1 acym@um.edu.my, Kiat Tat Qua2 quakt@utar.edu.my
Publikováno v:
Publications de l'Institut Mathématique. 2017, Vol. 102 Issue 116, p195-202. 8p.
Autor:
Kiat Tat Qua, Angelina Yan Mui Chin
Publikováno v:
Publications de l'Institut Math?matique (Belgrade). 102:195-202
Let R be a ring with identity and let g(x) be a polynomial in Z(R)[x] where Z(R) denotes the center of R. An element r ? R is called g(x)-clean if r = u + s for some u,s ? R such that u is a unit and g(s) = 0. The ring R is g(x)-clean if every elemen
Autor:
A. Y. M. Chin, Kiat Tat Qua
Publikováno v:
Rendiconti del Seminario Matematico della Università di Padova. 137:223-228
Autor:
A. Y. M. Chin, Kiat Tat Qua
Publikováno v:
Acta Mathematica Hungarica. 132:113-116
Let R be an associative ring with identity. An element x∈R is said to be weakly clean if x=u+e or x=u−e for some unit u and idempotent e in R. The ring R is said to be weakly clean if all of its elements are weakly clean. In this paper we obtain
Autor:
A. Y. M. Chin, Kiat Tat Qua
Publikováno v:
Publicationes Mathematicae Debrecen. 78:569-574
Let R be an associative ring with identity. An element x 2 R is clean if x can be written as the sum of a unit and an idempotent in R. R is said to be clean if all of its elements are clean. Let n be a positive integer. An element x 2 R is n-clean if
Autor:
Kiat Tat Qua, A. Y. M. Chin
Publikováno v:
AIP Conference Proceedings.
Let R be an associative ring with identity and let n be a positive integer. An element x∈R is n-clean if x = u1+⋯+un+e for some units ui∈R(i = 1,…,n) and idempotent e ∈ R. The ring R is said to be n-clean if all of its elements are n-clean.
Autor:
Kiat Tat Qua, A. Y. M. Chin
Publikováno v:
AIP Conference Proceedings.
Let R be an associative ring with identity. An element x ∈ R is clean if x can be written as the sum of an idempotent element and a unit in R. The ring R is said to be clean if all of its elements are clean. An element x ∈ R is weakly clean if x