Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Khramtcova, Elena"'
We introduce dynamic smooth (a.k.a. balanced) compressed quadtrees with worst-case constant time updates in constant dimensions. We distinguish two versions of the problem. First, we show that quadtrees as a space-division data structure can be made
Externí odkaz:
http://arxiv.org/abs/1712.05591
Consider a pair of plane straight-line graphs, whose edges are colored red and blue, respectively, and let n be the total complexity of both graphs. We present a O(n log n)-time O(n)-space technique to preprocess such pair of graphs, that enables eff
Externí odkaz:
http://arxiv.org/abs/1701.02229
This paper applies the randomized incremental construction (RIC) framework to computing the Hausdorff Voronoi diagram of a family of k clusters of points in the plane. The total number of points is n. The diagram is a generalization of Voronoi diagra
Externí odkaz:
http://arxiv.org/abs/1612.01335
We present an expected linear-time algorithm to construct the farthest-segment Voronoi diagram, given the sequence of its faces at infinity. This sequence forms a Davenport-Schinzel sequence of order 3 and it can be computed in O(n log n) time, where
Externí odkaz:
http://arxiv.org/abs/1411.2816
In the Hausdorff Voronoi diagram of a family of \emph{clusters of points} in the plane, the distance between a point $t$ and a cluster $P$ is measured as the maximum distance between $t$ and any point in $P$, and the diagram is defined in a nearest-n
Externí odkaz:
http://arxiv.org/abs/1312.3904
In the Hausdorff Voronoi diagram of a set of clusters of points in the plane, the distance between a point t and a cluster P is the maximum Euclidean distance between t and a point in P. This diagram has direct applications in VLSI design. We conside
Externí odkaz:
http://arxiv.org/abs/1306.5838
Autor:
v.d., Ivor Hoog, Khramtcova, Elena, Löffler, Maarten, Speckmann, Bettina, Tóth, Csaba D., Geometric Computing, Sub Geometric Computing
Publikováno v:
34th International Symposium on Computational Geometry, 99. Leibniz International Proceedings in Informatics (LIPIcs)
We introduce dynamic smooth (a.k.a. balanced) compressed quadtrees with worst-case constant time updates in constant dimensions. We distinguish two versions of the problem. First, we show that quadtrees as a space-division data structure can be made
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b792f4d3be4e88608833dbdbaac6fb35
https://dspace.library.uu.nl/handle/1874/371760
https://dspace.library.uu.nl/handle/1874/371760
The Voronoi diagram is a fundamental geometric structure that encodes proximity information. Given a set of geometric objects, called sites, their Voronoi diagram is a subdivision of the underlying space into maximal regions, such that all points wit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______805::adc86ef0b94b86a4e6b8af2653ee9ca9
http://doc.rero.ch/record/278229/files/2016INFO005.pdf
http://doc.rero.ch/record/278229/files/2016INFO005.pdf
Autor:
Khramtcova, Elena, Löffler, Maarten
We present a data structure to maintain a set of intervals on the real line subject to fast insertions and deletions of the intervals, stabbing queries, and local updates. Intuitively, a local update replaces an interval by another one of roughly the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______101::ad790888e9fa02feb5f5b6b524cd795e
https://dspace.library.uu.nl/handle/1874/351023
https://dspace.library.uu.nl/handle/1874/351023
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.