Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Khoruzhenko, Boris A."'
Publikováno v:
Entropy 2023, 25(1), 74
Complex eigenvalues of random matrices $J=\text{GUE }+ i\gamma \diag (1, 0, \ldots, 0)$ provide the simplest model for studying resonances in wave scattering from a quantum chaotic system via a single open channel. It is known that in the limit of la
Externí odkaz:
http://arxiv.org/abs/2211.00180
This paper is concerned with complex eigenvalues of truncated unitary quaternion matrices equipped with the Haar measure. The joint eigenvalue probability density function is obtained for truncations of any size. We also obtain the spectral density a
Externí odkaz:
http://arxiv.org/abs/2111.02381
Autor:
Grela, Jacek, Khoruzhenko, Boris A.
Publikováno v:
J. Phys. A: Math. Theor. 55 154001 (2022)
Building on the work of Fyodorov (2004) and Fyodorov and Nadal (2012) we examine the critical behaviour of population of saddles with fixed instability index $k$ in high dimensional random energy landscapes. Such landscapes consist of a parabolic con
Externí odkaz:
http://arxiv.org/abs/2106.01245
Publikováno v:
PNAS (2021) Vol. 118 No. 34 e2023719118
We consider a nonlinear autonomous system of $N\gg 1$ degrees of freedom randomly coupled by both relaxational ('gradient') and non-relaxational ('solenoidal') random interactions. We show that with increased interaction strength such systems generic
Externí odkaz:
http://arxiv.org/abs/2008.00690
Publikováno v:
Proc. Natl. Acad. Sci. USA , vol. 113 , Issue: 25, 6827-- 6832 (2016)
We study a system of $N\gg 1$ degrees of freedom coupled via a smooth homogeneous Gaussian vector field with both gradient and divergence-free components. In the absence of coupling, the system is exponentially relaxing to an equilibrium with rate $\
Externí odkaz:
http://arxiv.org/abs/1509.05737
Autor:
Fyodorov, Yan V.1 (AUTHOR) yan.fyodorov@kcl.ac.uk, Khoruzhenko, Boris A.2 (AUTHOR) yan.fyodorov@kcl.ac.uk, Poplavskyi, Mihail2 (AUTHOR)
Publikováno v:
Entropy. Jan2023, Vol. 25 Issue 1, p74. 31p.
Publikováno v:
J. Phys. A: Math. Theor. 46, 262001 (2013) [10 pages]
The K-matrix, also known as the "Wigner reaction matrix" in nuclear scattering or "impedance matrix" in the electromagnetic wave scattering, is given essentially by an M x M diagonal block of the resolvent (E-H)^{-1} of a Hamiltonian H. For chaotic q
Externí odkaz:
http://arxiv.org/abs/1304.4368
Publikováno v:
Phys. Rev. E 82, 040106(R) (2010) [4 pages]
Statistical properties of non--symmetric real random matrices of size $M$, obtained as truncations of random orthogonal $N\times N$ matrices are investigated. We derive an exact formula for the density of eigenvalues which consists of two components:
Externí odkaz:
http://arxiv.org/abs/1008.2075
Publikováno v:
J. Phys. A: Math. Theor. 42 (2009) 222002
We derive an explicit simple formula for expectations of all Schur functions in the real Ginibre ensemble. It is a positive integer for all entries of the partition even and zero otherwise. The result can be used to determine the average of any analy
Externí odkaz:
http://arxiv.org/abs/0903.5071
Autor:
Wei, Yi, Khoruzhenko, Boris A.
The fermionic, bosonic and supersymmetric variants of the colour-flavour transformation are derived for the orthogonal group. These transformations are then used to calculate the ensemble averages of characteristic polynomials of real random matrices
Externí odkaz:
http://arxiv.org/abs/0901.0746