Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Khodorchenko, Maria"'
In this work, we present an AutoTM 2.0 framework for optimizing additively regularized topic models. Comparing to the previous version, this version includes such valuable improvements as novel optimization pipeline, LLM-based quality metrics and dis
Externí odkaz:
http://arxiv.org/abs/2410.00655
Autor:
Zakharova, Anastasiia, Alexandrov, Dmitriy, Khodorchenko, Maria, Butakov, Nikolay, Vasilev, Alexey, Savchenko, Maxim, Grigorievskiy, Alexander
Machine learning (ML) models trained on datasets owned by different organizations and physically located in remote databases offer benefits in many real-world use cases. State regulations or business requirements often prevent data transfer to a cent
Externí odkaz:
http://arxiv.org/abs/2409.15558
The tasks of aspect identification and term extraction remain challenging in natural language processing. While supervised methods achieve high scores, it is hard to use them in real-world applications due to the lack of labelled datasets. Unsupervis
Externí odkaz:
http://arxiv.org/abs/2005.02771
Publikováno v:
In Procedia Computer Science 2020 178:213-223
Autor:
Khodorchenko, Maria1 (AUTHOR) mariyaxod@yandex.ru, Butakov, Nikolay1 (AUTHOR), Sokhin, Timur1 (AUTHOR), Teryoshkin, Sergey1 (AUTHOR)
Publikováno v:
Logic Journal of the IGPL. Apr2023, Vol. 31 Issue 2, p287-299. 13p.
Autor:
Khodorchenko, Maria
Publikováno v:
In Procedia Computer Science 2019 156:166-175
Autor:
Khodorchenko, Maria, Butakov, Nikolay
Publikováno v:
In Procedia Computer Science 2018 136:236-245
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.