Zobrazeno 1 - 10
of 308
pro vyhledávání: '"Khartov, A. A."'
Autor:
Khartov, A. A.
We consider a new class $\boldsymbol{Q}$ of distribution functions $F$ that have the property of rational-infinite divisibility: there exist some infinitely divisible distribution functions $F_1$ and $F_2$ such that $F_1=F*F_2$. A distribution functi
Externí odkaz:
http://arxiv.org/abs/2412.18915
Autor:
Khartov, A. A., Limar, I. A.
We consider a problem of approximation of $d$-variate functions defined on $\mathbb{R}^d$ which belong to the Hilbert space with tensor product-type reproducing Gaussian kernel with constant shape parameter. Within worst case setting, we investigate
Externí odkaz:
http://arxiv.org/abs/2306.14239
Autor:
Khartov, A. A.
We study the class $\boldsymbol{Q}$ of distribution functions $F$ that have the property of rational-infinite divisibility: there exist some infinitely divisible distribution functions $F_1$ and $F_2$ such that $F_1=F*F_2$. The class $\boldsymbol{Q}$
Externí odkaz:
http://arxiv.org/abs/2305.14524
Autor:
Alexeev, I. A., Khartov, A. A.
Multivariate discrete probability laws are considered. We show that such laws are quasi-infinitely divisible if and only if their characteristic functions are separated from zero. We generalize the existing results for the univariate discrete laws an
Externí odkaz:
http://arxiv.org/abs/2210.12313
Autor:
Khartov, A. A.
Publikováno v:
Pacific J. Math. 322 (2023) 341-367
We study a new class of so-called quasi-infinitely divisible laws, which is a wide natural extension of the well known class of infinitely divisible laws through the L\'evy--Khinchine type representations. We are interested in criteria of weak conver
Externí odkaz:
http://arxiv.org/abs/2204.13667
Autor:
Khartov, A. A.
We consider arbitrary discrete probability laws on the real line. We obtain a criterion of their belonging to a new class of quasi-infinitely divisible laws, which is a wide natural extension of the class of well known infinitely divisible laws throu
Externí odkaz:
http://arxiv.org/abs/2112.03236
Autor:
Khartov, A.A., Limar, I.A.
Publikováno v:
In Journal of Complexity June 2024 82
Autor:
Svotina, V.V., Khartov, S.A.
Publikováno v:
In Acta Astronautica February 2024 215:653-663
Autor:
Khartov, A. A., Limar, I. A.
We consider tensor product random fields $Y_d$, $d\in\mathbb{N}$, whose covariance funtions are Gaussian kernels. The average case approximation complexity $n^{Y_d}(\varepsilon)$ is defined as the minimal number of evaluations of arbitrary linear fun
Externí odkaz:
http://arxiv.org/abs/2101.06331
Autor:
Alexeev, I. A., Khartov, A. A.
We consider discrete probability laws on the real line, whose characteristic functions are separated from zero. In particular, this class includes arbitrary discrete infinitely divisible laws and lattice probability laws, whose characteristic functio
Externí odkaz:
http://arxiv.org/abs/2101.06038