Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Kharitonova, Ksenia"'
Autor:
de Gibert, Ona, Kharitonova, Ksenia, Figueras, Blanca Calvo, Armengol-Estapé, Jordi, Melero, Maite
In this work, we introduce sequence-to-sequence language resources for Catalan, a moderately under-resourced language, towards two tasks, namely: Summarization and Machine Translation (MT). We present two new abstractive summarization datasets in the
Externí odkaz:
http://arxiv.org/abs/2202.06871
Autor:
Costa-jussà, Marta R., Escolano, Carlos, Basta, Christine, Ferrando, Javier, Batlle, Roser, Kharitonova, Ksenia
Multilingual Neural Machine Translation architectures mainly differ in the amount of sharing modules and parameters among languages. In this paper, and from an algorithmic perspective, we explore if the chosen architecture, when trained with the same
Externí odkaz:
http://arxiv.org/abs/2012.13176
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Ученые записки Казанского университета. Серия Гуманитарные науки / Proceedings of Kazan University. Humanities Series. 157(5):68-78
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=472848
Autor:
Kharitonova, Ksenia
Publikováno v:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Universitat Politècnica de Catalunya (UPC)
Neural Machine Translation has the power of learning from a large collection of data, which allows it to learn translations effectively and without requiring linguistic knowledge from the languages to translate. The main drawback is that this large c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::05e9810beae338b5e2e25a029f5040f9
http://hdl.handle.net/2117/348437
http://hdl.handle.net/2117/348437
Autor:
Kharitonova, Ksenia, Gibert Bonet, Ona de, Armengol Estapé, Jordi, Rodríguez i Alvarez, Mar, Melero, Maite
Publikováno v:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Universitat Politècnica de Catalunya (UPC)
This paper describes the participation of the BSC team in the WMT2021{'}s Multilingual Low-Resource Translation for Indo-European Languages Shared Task. The system aims to solve the Subtask 2: Wikipedia cultural heritage articles, which involves tran
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::e980b5775025620885ca00d5243855b9
https://hdl.handle.net/2117/366266
https://hdl.handle.net/2117/366266
Autor:
Kharitonova, Ksenia, Callejas, Zoraida, Pérez-Fernández, David, Gutiérrez-Fandiño, Asier, Griol, David
Publikováno v:
In Data in Brief October 2023 50
Autor:
Costa-juss��, Marta R., Escolano, Carlos, Basta, Christine, Ferrando, Javier, Batlle, Roser, Kharitonova, Ksenia
Multilingual Neural Machine Translation architectures mainly differ in the amount of sharing modules and parameters among languages. In this paper, and from an algorithmic perspective, we explore if the chosen architecture, when trained with the same
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b1ae2d4eb416c9e9a6e0355b282d097b
http://arxiv.org/abs/2012.13176
http://arxiv.org/abs/2012.13176
Autor:
Ruiz Costa-Jussà, Marta, Escolano Peinado, Carlos, Basta, Christine Raouf Saad, Ferrando Monsonís, Javier, Batlle, Roser, Kharitonova, Ksenia
Publikováno v:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Universitat Politècnica de Catalunya (UPC)
Multilingual Neural Machine Translation architectures mainly differ in the amount of sharing modules and parameters among languages. In this paper, and from an algorithmic perspective, we explore if the chosen architecture, when trained with the same
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::20c485690b89efa1043695dbe3a36c88
http://hdl.handle.net/2117/348079
http://hdl.handle.net/2117/348079