Zobrazeno 1 - 10
of 47
pro vyhledávání: '"Khanmamedov, Azer"'
Autor:
Şen, Zehra, Khanmamedov, Azer
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 February 2024 530(2)
Autor:
Khanmamedov, Azer, Yayla, Sema
We investigate the initial-value problem for the semilinear plate equation containing localized strong damping, localized weak damping and nonlocal nonlinearity. We prove that if nonnegative damping coefficients are strictly positive almost everywher
Externí odkaz:
http://arxiv.org/abs/1703.03485
Autor:
Khanmamedov, Azer, Şen, Zehra
This paper is concerned with the initial boundary value problem for one dimensional strongly damped wave equation involving $p$-Laplacian. For $p>2$, we establish the existence of weak local attractors for this problem in $W_{0}^{1,p}(0,1)\times L^{2
Externí odkaz:
http://arxiv.org/abs/1602.03339
Autor:
Khanmamedov, Azer
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 February 2021 494(2)
Autor:
Khanmamedov, Azer, Simsek, Sema
We consider Cauchy problem for the semilinear plate equation with nonlocal nonlinearity. Under mild conditions on the damping coefficient, we prove that the semigroup generated by this problem possesses a global attractor.
Externí odkaz:
http://arxiv.org/abs/1503.09123
Autor:
Khanmamedov, Azer
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 March 2020 483(2)
We consider the initial value problem for the semilinear plate equation with nonlocal nonlinearity. We prove the existence of global attractor and then establish the regularity and finite dimensionality of this attractor.
Externí odkaz:
http://arxiv.org/abs/1409.4722
In this paper, we prove the unique continuation property for the weak solution of the plate equation with non-smooth coefficients. Then, we apply this result to study the global attractor for the semilinear plate equation with a localized damping.
Externí odkaz:
http://arxiv.org/abs/1404.5586
Autor:
Simsek, Sema, Khanmamedov, Azer
In this paper, we give positive answer to the open question raised in [E. Zuazua, Exponential decay for the semilinear wave equation with localized damping in unbounded domains. J. Math. Pures Appl., 70 (1991) 513--529] on the exponential decay of so
Externí odkaz:
http://arxiv.org/abs/1310.7243
Autor:
Khanmamedov, Azer
In this paper, we study the initial boundary value problem for the two dimensional strong damped wave equation with exponentially growing source and damping terms. We first show the well-posedness of this problem and then prove the existence of the g
Externí odkaz:
http://arxiv.org/abs/1212.2180