Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Khang Nhut Lam"'
Publikováno v:
IEEE Access, Vol 11, Pp 90094-90104 (2023)
A virtual assistant or smart chatbot should be able to understand user questions and respond correctly and usefully, even if the questions are posed ungrammatically with misspellings and other errors. This paper describes the design and construction
Externí odkaz:
https://doaj.org/article/9171749cb1a84aa5a6c02605994dde70
Autor:
Khang Nhut Lam, My-Khanh Thi Nguyen, Khang Duy Nguyen, Nghia Hieu Nguyen, Kim-Yen Thi Nguyen, Andrew Ware
Publikováno v:
2022 RIVF International Conference on Computing and Communication Technologies (RIVF).
Autor:
Khang Nhut Lam, Jugal Kalita
Publikováno v:
Computación y Sistemas. 26
This paper examines approaches to generate lexical resources for endangered languages. Our algorithms construct bilingual dictionaries and multilingual thesauruses using public Wordnets and a machine translator (MT). Since our work relies on only one
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ce9b4c2fb8ad7161242af0acfcf93dad
http://arxiv.org/abs/2208.03876
http://arxiv.org/abs/2208.03876
Publikováno v:
NLPIR
In this study, we build a chatbot system in a closed domain with the RASA framework, using several models such as SVM for classifying intents, CRF for extracting entities and LSTM for predicting action. To improve responses from the bot, the kNN algo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::92eead765508d742b0c020bc7af548cd
Publikováno v:
Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications ISBN: 9789811980688
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::72038f1e940f308b2f77573717c3e0c5
https://doi.org/10.1007/978-981-19-8069-5_25
https://doi.org/10.1007/978-981-19-8069-5_25
Publikováno v:
MWE@NAACL-HLT
Past approaches to translate a phrase in a language L1 to a language L2 using a dictionary-based approach require grammar rules to restructure initial translations. This paper introduces a novel method without using any grammar rules to translate a g
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dea87cdfb0f8a27f8a1f410e16e7ba11
Autor:
Khang Nhut Lam, Vinh Phuoc Mai, Gia-Binh Quach Dang, Quoc-Bao Hong Ngo, Nhat-Hao Quan Huynh, Mai Phuc Lieu, Jugal Kalita
Publikováno v:
Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications ISBN: 9789811980688
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ac95f9e20bc63da77187a8ae8485425a
https://doi.org/10.1007/978-981-19-8069-5_52
https://doi.org/10.1007/978-981-19-8069-5_52
Publikováno v:
Artificial Intelligence in Data and Big Data Processing ISBN: 9783030976095
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c19afd304db39b6591277a387be00d85
https://doi.org/10.1007/978-3-030-97610-1_8
https://doi.org/10.1007/978-3-030-97610-1_8
This paper discusses a facial expression recognition model and a description generation model to build descriptive sentences for images and facial expressions of people in images. Our study shows that YOLOv5 achieves better results than a traditional
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b35f43dd7d699942d69cf6c660d8e550
https://doi.org/10.3233/faia210176
https://doi.org/10.3233/faia210176