Zobrazeno 1 - 10
of 44
pro vyhledávání: '"Khan, Qayum"'
Autor:
Khan, Qayum
Publikováno v:
Topology and its Applications, Volume 311 (2022), #107965
For $G$ a topological group, existence theorems by Milnor (1956), Gelfand-Fuks (1968), and Segal (1975) of classifying spaces for principal $G$-bundles are generalized to $G$-spaces with torsion. Namely, any $G$-space approximately covered by tubes (
Externí odkaz:
http://arxiv.org/abs/1907.00871
Autor:
Khan, Qayum
Publikováno v:
New York Journal of Mathematics, Volume 27 (2021), 1554--1579
The Hilbert-Smith conjecture states, for any connected topological manifold $M$, any locally compact subgroup of $\mathrm{Homeo}(M)$ is a Lie group. We generalize basic results of Segal-Kosniowski-tomDieck (2.6), James-Segal (2.12), G Bredon (3.7), J
Externí odkaz:
http://arxiv.org/abs/1905.09977
Autor:
Khan, Qayum
Let $G$ be a matrix group. Topological $G$-manifolds with Palais-proper action have the $G$-homotopy type of countable $G$-CW complexes (3.2). This generalizes E Elfving's dissertation theorem for locally linear $G$-manifolds (1996). Also we improve
Externí odkaz:
http://arxiv.org/abs/1806.06410
Autor:
Khan, Qayum
Publikováno v:
In Topology and its Applications 15 April 2022 311
Autor:
Khan, Qayum
Publikováno v:
Topology and its Applications, Volume 235 (2018), 14--21
Let $G$ be a compact Lie group. (Compact) topological $G$-manifolds have the $G$-homotopy type of (finite-dimensional) countable $G$-CW complexes (2.5). This partly generalizes Elfving's theorem for locally linear $G$-manifolds [Elf96], wherein the L
Externí odkaz:
http://arxiv.org/abs/1708.08094
Autor:
Khan, Qayum, Smith, Gerrit
Publikováno v:
Topology and its Applications, Volume 262 (2019), 50--63
Given an injective amalgam at the level of fundamental groups and a specific 3-manifold, is there a corresponding geometric-topological decomposition of a given 4-manifold, in a stable sense? We find an algebraic-topological splitting criterion in te
Externí odkaz:
http://arxiv.org/abs/1702.05362
Autor:
Khan, Qayum
Publikováno v:
Topology and its Applications, Volume 220 (2017), 14--30
Suppose $X$ and $Y$ are compact connected topological 4-manifolds with fundamental group $\pi$. For any $r \geqslant 0$, $Y$ is $r$-stably homeomorphic to $X$ if $Y \# r(S^2 \times S^2)$ is homeomorphic to $X \# r(S^2\times S^2)$. How close is stable
Externí odkaz:
http://arxiv.org/abs/1606.05968
Autor:
Khan, Qayum
Thesis (Ph.D.)--Indiana University, Dept. of Mathematics, 2006.
"Title from dissertation home page (viewed June 28, 2007)." Source: Dissertation Abstracts International, Volume: 67-06, Section: B, page: 3165. Adviser: James F. Davis.
"Title from dissertation home page (viewed June 28, 2007)." Source: Dissertation Abstracts International, Volume: 67-06, Section: B, page: 3165. Adviser: James F. Davis.
Autor:
Khan, Qayum
Publikováno v:
Indiana University Mathematics Journal, Volume 66 (2017), 1453-1482
Let $n$ be a positive integer, and let $\ell>1$ be square-free odd. We classify the set of equivariant homeomorphism classes of free $C_\ell$-actions on the product $S^1 \times S^n$ of spheres, up to indeterminacy bounded in $\ell$. The description i
Externí odkaz:
http://arxiv.org/abs/1405.0699
Publikováno v:
Transactions of the American Mathematical Society, Series B, Volume 2 (2015), 113-133
The problem of equivariant rigidity is the $\Gamma$-homeomorphism classification of $\Gamma$-actions on manifolds with compact quotient and with contractible fixed sets for all finite subgroups of $\Gamma$. In other words, this is the classification
Externí odkaz:
http://arxiv.org/abs/1402.0280