Zobrazeno 1 - 10
of 193
pro vyhledávání: '"Khalkhali M"'
Autor:
Khalkhali, M., Rangipour, B.
We show that various cyclic and cocyclic modules attached to Hopf algebras and Hopf modules are related to each other via Connes' duality isomorphism for the cyclic category.
Comment: 11 pages
Comment: 11 pages
Externí odkaz:
http://arxiv.org/abs/math/0310088
Following the idea of an invariant differential complex, we construct general-type cyclic modules that provide the common denominator of known cyclic theories. The cyclicity of these modules is governed by Hopf-algebraic structures. We prove that the
Externí odkaz:
http://arxiv.org/abs/math/0306288
Autor:
Khalkhali, M., Rangipour, B.
We consider Hopf crossed products of the the type $A#_\sigma \mathcal{H}$, where $\mathcal{H}$ is a cocommutative Hopf algebra, $A$ is an $\mathcal{H}$-module algebra and $\sigma$ is a "numerical" convolution invertible 2-cocycle on $\mathcal{H}$. we
Externí odkaz:
http://arxiv.org/abs/math/0303068
Autor:
Khalkhali, M., Rangipour, B.
We review recent progress in the study of cyclic cohomology of Hopf algebras, Hopf algebroids, and invariant cyclic homology starting with the pioneering work of Connes-Moscovici.
Comment: To be published by Banach Centre Publications
Comment: To be published by Banach Centre Publications
Externí odkaz:
http://arxiv.org/abs/math/0303069
Autor:
Khalkhali, M., Rangipour, B.
We define a noncommutative analogue of invariant de Rham cohomology. More precisely, for a triple $(A,\mathcal{H},M)$ consisting of a Hopf algebra $\mathcal{H}$, an $\mathcal{H}$-comodule algebra $A$, an $\mathcal{H}$-module $M$, and a compatible gro
Externí odkaz:
http://arxiv.org/abs/math/0207118
Autor:
Akbarpour, R., Khalkhali, M.
In this paper we construct a cylindrical module $A \natural \mathcal{H}$ for an $\mathcal{H}$-comodule algebra $A$, where the antipode of the Hopf algebra $\mathcal{H}$ is bijective. We show that the cyclic module associated to the diagonal of $A \na
Externí odkaz:
http://arxiv.org/abs/math/0108126
Autor:
Akbarpour, R., Khalkhali, M.
We extend our work in~\cite{rm01} to the case of Hopf comodule coalgebras. We introduce the cocylindrical module $C \natural^{} \mathcal{H}$, where $\mathcal{H}$ is a Hopf algebra with bijective antipode and $C$ is a Hopf comodule coalgebra over $\ma
Externí odkaz:
http://arxiv.org/abs/math/0107166
Autor:
Khalkhali, M., Rangipour, B.
We use the homological perturbation lemma to give an explicit proof of the cyclic Eilenberg-Zilber theorem for cylindrical modules.
Comment: Final version to appear in Canadian Mathematical Bulletin
Comment: Final version to appear in Canadian Mathematical Bulletin
Externí odkaz:
http://arxiv.org/abs/math/0106167
Autor:
Khalkhali, M., Rangipour, B.
We introduce the concept of {\it para-Hopf algebroid} and define their cyclic cohomology in the spirit of Connes-Moscovici cyclic cohomology for Hopf algebras. Para-Hopf algebroids are closely related to, but different from, Hopf algebroids. Their de
Externí odkaz:
http://arxiv.org/abs/math/0105105
Autor:
Akbarpour, R., Khalkhali, M.
We introduce the cylindrical module $A \natural \mathcal{H}$, where $\mathcal{H}$ is a Hopf algebra and $A$ is a Hopf module algebra over $\mathcal{H}$. We show that there exists an isomorphism between $\mathsf{C}_{\bullet}(A^{op} \rtimes \mathcal{H}
Externí odkaz:
http://arxiv.org/abs/math/0011248