Zobrazeno 1 - 10
of 128
pro vyhledávání: '"Khalimsky topology"'
Autor:
Sang-Eon Han
Publikováno v:
AIMS Mathematics, Vol 7, Iss 7, Pp 11581-11596 (2022)
Let $ (X, T) $ be an Alexandroff space. We define the adjacency relation $ AR_T $ on $ X $ induced by $ T $ as the irreflexive relation defined for $ x \neq y $ in $ X $ by: $ (x,y) \in AR_T\,\,{\rm{if \;and\; only\; if}}\,\, x \in SN_T(y)\,\,{\rm
Externí odkaz:
https://doaj.org/article/aee995be86e54ad8a126dfbe9a2e59a1
Publikováno v:
AIMS Mathematics, Vol 7, Iss 1, Pp 1224-1240 (2022)
The present paper intensively studies various properties of certain topologies on the set of integers $ {\mathbb Z} $ (resp. $ {\mathbb Z}^n $) which are either homeomorphic or not homeomorphic to the typical Khalimsky line topology (resp. $ n $-dime
Externí odkaz:
https://doaj.org/article/d7f37df97eb8428d86f06ee93d19d584
Autor:
Šlapal Josef
Publikováno v:
Open Mathematics, Vol 17, Iss 1, Pp 1374-1380 (2019)
Given a simple graph with the vertex set X, we discuss a closure operator on X induced by a set of paths with identical lengths in the graph. We introduce a certain set of paths of the same length in the 2-adjacency graph on the digital line ℤ and
Externí odkaz:
https://doaj.org/article/9dc19ca15401488fbe17030f8c4b7eae
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Šlapal Josef
Publikováno v:
Open Mathematics, Vol 16, Iss 1, Pp 1573-1581 (2018)
For every positive integer n,we introduce and discuss an isotone Galois connection between the sets of paths of lengths n in a simple graph and the closure operators on the (vertex set of the) graph. We consider certain sets of paths in a particular
Externí odkaz:
https://doaj.org/article/bcbe27713876406f9dabc34b27bb6e0d
Publikováno v:
AIMS Mathematics, Vol 7, Iss 1, Pp 1224-1240 (2022)
The present paper intensively studies various properties of certain topologies on the set of integers $ {\mathbb Z} $ (resp. $ {\mathbb Z}^n $) which are either homeomorphic or not homeomorphic to the typical Khalimsky line topology (resp. $ n $-dime
Publikováno v:
Mathematics, Vol 7, Iss 11, p 1072 (2019)
The present paper deals with two types of topologies on the set of integers, Z : a quasi-discrete topology and a topology satisfying the T 1 2 -separation axiom. Furthermore, for each n ∈ N , we develop countably many topologies on Z n which are no
Externí odkaz:
https://doaj.org/article/cb8345719cb2452aab348e6f294fae2b
Autor:
Sang-Eon Han
Publikováno v:
Mathematics, Vol 7, Iss 10, p 954 (2019)
This paper explores a certain relationship between the almost fixed point property (AFPP for short) of a compact and n-dimensional Euclidean space and that of its digitized space. Based on several types of digitizations, we prove that the AFPP of a c
Externí odkaz:
https://doaj.org/article/479caaca6274415694c00ea5a51a0c28
Publikováno v:
Mathematics, Vol 7, Iss 10, p 879 (2019)
Unlike the study of the fixed point property (FPP, for brevity) of retractable topological spaces, the research of the FPP of non-retractable topological spaces remains. The present paper deals with the issue. Based on order-theoretic foundations and
Externí odkaz:
https://doaj.org/article/0e708530b6434c41b7896915d8055358