Zobrazeno 1 - 10
of 46
pro vyhledávání: '"Khaldoun Al-Zoubi"'
Publikováno v:
AIMS Mathematics, Vol 9, Iss 5, Pp 12315-12322 (2024)
Let $ \Gamma $ be a group, $ \mathcal{A} $ be a $ \Gamma $-graded commutative ring with unity $ 1, $ and $ \mathcal{D} $ a graded $ \mathcal{A} $-module. In this paper, we introduce the concept of graded weakly $ J_{gr} $-semiprime submodules as a ge
Externí odkaz:
https://doaj.org/article/86b192e5de3a48fa8c7d97b842328e2c
Autor:
Mohammad Hamoda, Khaldoun Al-Zoubi
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 42 (2024)
In this paper, we introduce the concept of graded S−comultiplication modules. Several results concerning graded S−comultiplication modules are proved. We show that N is a graded S−second submodule of a graded S−comultiplication R−module M i
Externí odkaz:
https://doaj.org/article/5706d5bcbb944f6cba900c7f29a40231
Autor:
Saif Salam, Khaldoun Al-Zoubi
Publikováno v:
AIMS Mathematics, Vol 8, Iss 3, Pp 6626-6641 (2023)
Let $ R $ be a $ G $ graded commutative ring and $ M $ be a $ G $-graded $ R $-module. The set of all graded second submodules of $ M $ is denoted by $ Spec_G^s(M), $ and it is called the graded second spectrum of $ M $. We discuss graded rings with
Externí odkaz:
https://doaj.org/article/bfa3e1fbaa124908b10f4d2546618074
Autor:
Saif Salam, Khaldoun Al-Zoubi
Publikováno v:
Applied General Topology, Vol 23, Iss 2, Pp 345-361 (2022)
Let R be a G-graded ring and M be a G-graded R-module. We define the graded primary spectrum of M, denoted by PSG(M), to be the set of all graded primary submodules Q of M such that (GrM(Q) :RM) = Gr((Q:RM)). In this paper, we define a topology on PS
Externí odkaz:
https://doaj.org/article/1d0e9f73f84f4bdea82d8a44552bfcb8
Publikováno v:
Heliyon, Vol 8, Iss 10, Pp e11230- (2022)
In this paper, we introduce the concept of graded classical B-2-absorbing submodule as a generalization of graded classical 2-absorbing submodule and we give a number of results concerning such graded modules.
Externí odkaz:
https://doaj.org/article/21feab0950074d49aa3c4bd154347243
Autor:
Shatha Alghueiri, Khaldoun Al-Zoubi
Publikováno v:
AIMS Mathematics, Vol 5, Iss 6, Pp 7624-7631 (2020)
Let $G$ be an abelian group with identity $e$. Let $R$ be a $G$-graded commutative ring with identity and $M$ a graded $R$-module. In this paper, we introduce the concept of graded 2-absorbing $I_{e}$-prime submodule as a generalization of a graded 2
Externí odkaz:
https://doaj.org/article/383f10601200446fa59249847cd4e101
Publikováno v:
Proyecciones (Antofagasta). 41:1377-1395
A ring R is said to be semi-commutative if whenever a, b ∈ R such that ab = 0, then aRb = 0. In this article, we introduce the concepts of g−semi-commutative rings and g−N−semi-commutative rings and we introduce several results concerning the
Autor:
Mohammed Al-Dolat, Khaldoun Al-Zoubi
This present work aims to provide several new upper bounds for the numerical radius of Hilbert space operators. We will use these upper bounds to improve and refine some results presented in [1] and [9] MSC(2010): 47A12, 47A30, 47A63, 47B33.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::41b6fa5cd05ecd6b1ad2c89ea871dc65
https://doi.org/10.21203/rs.3.rs-2668438/v1
https://doi.org/10.21203/rs.3.rs-2668438/v1
Autor:
Saif Salam, Khaldoun Al-Zoubi
Let $R$ be a $G$ graded commutative ring and $M$ be a $G$-graded $R$-module. The set of all graded second submodules of $M$ is denoted by $Spec_G^s(M)$ and it is called the graded second spectrum of $M$. In this paper, we discuss graded rings with No
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2f30811534eb74911ae213a0139f2b24
http://arxiv.org/abs/2207.10575
http://arxiv.org/abs/2207.10575
Autor:
Khaldoun Al-Zoubi, Shatha Alghueiri
Publikováno v:
Demonstratio Mathematica, Vol 54, Iss 1, Pp 162-167 (2021)
LetGbe an abelian group with identityee. LetRbe aG-graded commutative ring with identity 1, andMMbe a gradedR-module. In this paper, we introduce the concept of gradedJgr{J}_{gr}-classical 2-absorbing submodule as a generalization of a graded classic