Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Khai, D. Q."'
Autor:
Khai, D. Q.
In this paper, we study local well-posedness for the Navier-Stokes \linebreak equations with arbitrary initial data in homogeneous Sobolev spaces $\dot{H}^s_p(\mathbb{R}^d)$ for $d \geq 2, p > \frac{d}{2},\ {\rm and}\ \frac{d}{p} - 1 \leq s < \frac{d
Externí odkaz:
http://arxiv.org/abs/1608.06397
Autor:
Khai, D. Q., Duong, V. T. T.
In this paper, we study local well-posedness for the Navier-Stokes equations with arbitrary initial data in homogeneous Sobolev spaces $\dot{H}^s_p(\mathbb{R}^d)$ for $d \geq 2, p > \frac{d}{2},\ {\rm and}\ \frac{d}{p} - 1 \leq s < \frac{d}{2p}$. The
Externí odkaz:
http://arxiv.org/abs/1603.04219
Autor:
Khai, D. Q.
In this paper, we prove some results on the existence and decay properties of high order derivatives in time and space variables for local and global solutions of the Cauchy problem for the Navier-Stokes equations in Bessel-potential spaces.
Com
Com
Externí odkaz:
http://arxiv.org/abs/1603.01896
Autor:
Khai, D. Q., Tri, N. M.
Publikováno v:
Nonlinear Analysis 2017
In this paper, we study local well-posedness for the Navier-Stokes equations (NSE) with the arbitrary initial value in homogeneous Sobolev-Lorentz spaces $\dot{H}^s_{L^{q, r}}(\mathbb{R}^d):= (-\Delta)^{-s/2}L^{q,r}$ for $d \geq 2, q > 1, s \geq 0$,
Externí odkaz:
http://arxiv.org/abs/1601.01742
Autor:
Khai, D. Q., Tri, N. M.
Publikováno v:
J. Math. Sci. Univ. Tokyo 23 (2) (2016), 499-528
The existence of local unique mild solutions to the Navier-Stokes equations in the whole space with an initial tempered distribution datum in critical homogeneous or inhomogeneous Sobolev spaces is shown. Especially, the case when the integral-expone
Externí odkaz:
http://arxiv.org/abs/1601.01726
Autor:
Khai, D. Q., Tri, N. M.
In this paper, we prove some results on theexistence and space-time decay rates of global strong solutions of the Cauchy problem for the Navier-Stokes equations in weighed $L^\infty(\mathbb R^d,|x|^\gamma{\rm dx})\cap L^\infty(\mathbb R^d,|x|^\beta{\
Externí odkaz:
http://arxiv.org/abs/1601.01723
Autor:
Khai, D. Q., Tri, N. M.
Publikováno v:
J. Math. Anal. Appl. 437 (2) (2016), 754-781
In this note, for $s \in \mathbb R$ and $1 \leq p, r \leq \infty$, we introduce and study Sobolev-Fourier-Lorentz spaces $\dot{H}^s_{\mathcal{L}^{p, r}}(\mathbb{R}^d)$. In the family spaces $\dot{H}^s_{\mathcal{L}^{p, r}}(\mathbb{R}^d)$, the critical
Externí odkaz:
http://arxiv.org/abs/1601.01441
Publikováno v:
Advances in Differential Equations & Control Processes. Oct-Dec2022, Vol. 29 Issue 1, p101-115. 15p.
Publikováno v:
ACS Applied Polymer Materials. 5:1364-1373
Publikováno v:
Mathematische Nachrichten. Dec2021, Vol. 294 Issue 12, p2302-2316. 15p.