Zobrazeno 1 - 10
of 103
pro vyhledávání: '"Khademul Islam Molla"'
Publikováno v:
International Journal of Advanced Robotic Systems, Vol 18 (2021)
This article presents a hybrid wavelet-based algorithm to suppress the ocular artifacts from electroencephalography (EEG) signals. The hybrid wavelet transform (HWT) method is designed by the combination of discrete wavelet decomposition and wavelet
Externí odkaz:
https://doaj.org/article/b4fa9c6bd59c49d9aee289601ae83fb8
Publikováno v:
BioTechnologia, Vol 98, Iss 2, Pp 85-96 (2017)
The prediction of subcellular locations of proteins can provide useful hints for revealing their functions as well as for understanding the mechanisms of some diseases and, finally, for developing novel drugs. As the number of newly discovered protei
Externí odkaz:
https://doaj.org/article/e9c3f4fbdcc04d128df7216ff1372b3a
Autor:
Abdullah Al Shiam, Kazi Mahmudul Hassan, Md. Rabiul Islam, Ahmed M. M. Almassri, Hiroaki Wagatsuma, Md. Khademul Islam Molla
Publikováno v:
Brain Sciences, Vol 14, Iss 5, p 462 (2024)
Electroencephalography (EEG) is effectively employed to describe cognitive patterns corresponding to different tasks of motor functions for brain–computer interface (BCI) implementation. Explicit information processing is necessary to reduce the co
Externí odkaz:
https://doaj.org/article/ef28a4aa8cb84e63bb3e97289c552398
Publikováno v:
IEEE Access. 11:44019-44033
Autor:
Md. Humaun Kabir, Shabbir Mahmood, Abdullah Al Shiam, Abu Saleh Musa Miah, Jungpil Shin, Md. Khademul Islam Molla
Publikováno v:
Mathematics; Volume 11; Issue 8; Pages: 1921
Analyzing electroencephalography (EEG) signals with machine learning approaches has become an attractive research domain for linking the brain to the outside world to establish communication in the name of the Brain-Computer Interface (BCI). Many res
Autor:
Most. Sheuli Akter, Md. Rabiul Islam, Toshihisa Tanaka, Yasushi Iimura, Takumi Mitsuhashi, Hidenori Sugano, Duo Wang, Md. Khademul Islam Molla
Publikováno v:
Entropy, Vol 22, Iss 12, p 1415 (2020)
The design of a computer-aided system for identifying the seizure onset zone (SOZ) from interictal and ictal electroencephalograms (EEGs) is desired by epileptologists. This study aims to introduce the statistical features of high-frequency component
Externí odkaz:
https://doaj.org/article/2d917931be0043c080c74a8dde127633
Autor:
Abu Saleh Musa Miah, Jungpil Shin, Md. Al Mehedi Hasan, Md. Khademul Islam Molla, Yuichi Okuyama, Yoichi Tomioka
Publikováno v:
2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC).
Publikováno v:
Sensors, Vol 20, Iss 16, p 4639 (2020)
Epileptic seizure is a sudden alteration of behavior owing to a temporary change in the electrical functioning of the brain. There is an urgent demand for an automatic epilepsy detection system using electroencephalography (EEG) for clinical applicat
Externí odkaz:
https://doaj.org/article/b5f258554f1b4f528b2830d156457a00
Publikováno v:
IEEE Access, Vol 9, Pp 7632-7642 (2021)
Electroencephalography (EEG) captures the electrical activities of human brain. It is an easy and cost effective tool to characterize motor imager (MI) task used in brain computer interface (BCI) implementation. The MI task is represented by short ti
Publikováno v:
IEEE Access, Vol 9, Pp 167744-167755 (2021)
Brain-computer interface (BCI) refers to the recognition of brain activity leading to generate corresponding commands to interact with external devices. Due to its safety and high time resolution, electroencephalogram (EEG) based BCIs have become pop