Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Khadangi, Afshin"'
Autor:
Khadangi, Afshin
In the rapidly advancing field of deep learning, optimising deep neural networks is paramount. This paper introduces a novel method, Enhanced Velocity Estimation (EVE), which innovatively applies different learning rates to distinct components of the
Externí odkaz:
http://arxiv.org/abs/2308.10740
Autor:
Khadangi, Afshin
In this paper, we propose a novel learning paradigm called "DeepFlorist" for flower classification using ensemble learning as a meta-classifier. DeepFlorist combines the power of deep learning with the robustness of ensemble methods to achieve accura
Externí odkaz:
http://arxiv.org/abs/2307.01806
Autor:
Rajagopal, Vijay, Arumugam, Senthil, Hunter, Peter, Khadangi, Afshin, Chung, Joshua, Pan, Michael
Modern biology and biomedicine are undergoing a big-data explosion needing advanced computational algorithms to extract mechanistic insights on the physiological state of living cells. We present the motivation for the Cell Physiome: a framework and
Externí odkaz:
http://arxiv.org/abs/2202.13282
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Khadangi, Afshin1 (AUTHOR) akhadankish@student.unimelb.edu.au, Hanssen, Eric2 (AUTHOR), Rajagopal, Vijay1 (AUTHOR)
Publikováno v:
BMC Medical Informatics & Decision Making. 12/19/2019 Supplement 6, Vol. 19, p1-14. 14p. 3 Color Photographs, 5 Black and White Photographs, 9 Diagrams, 4 Charts, 1 Graph.
Supplementary figures and tables along with details about methods used in this study
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2125106e294b02db2fd63557e70a8bb6
Publikováno v:
ICPR
Recent high-throughput electron microscopy techniques such as focused ion-beam scanning electron microscopy (FIB-SEM) provide thousands of serial sections which assist the biologists in studying sub-cellular structures at high resolution and large vo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::31296df6537b877746ccc624bd8b00c9
https://doi.org/10.1101/2020.02.03.933127
https://doi.org/10.1101/2020.02.03.933127
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Rajagopal V; Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia; email: vijay.rajagopal@unimelb.edu.au., Arumugam S; Cellular Physiology Lab, Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences; European Molecular Biological Laboratory (EMBL) Australia; and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton/Melbourne, Victoria, Australia., Hunter PJ; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand., Khadangi A; Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia; email: vijay.rajagopal@unimelb.edu.au., Chung J; Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia; email: vijay.rajagopal@unimelb.edu.au., Pan M; School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia.
Publikováno v:
Annual review of biomedical data science [Annu Rev Biomed Data Sci] 2022 Aug 10; Vol. 5, pp. 341-366. Date of Electronic Publication: 2022 May 16.