Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Kh.F. Valiyev"'
Autor:
A.N. Kraiko, Kh.F. Valiyev
Publikováno v:
Journal of Applied Mathematics and Mechanics. 79:237-249
Self-similar solutions describing one-dimensional unsteady flows of an ideal (inviscid and non-heat-conducting) perfect gas are considered. Whereas, in the well-known problem of isentropically compressing a gas to a plane, axis or centre of symmetry
Publikováno v:
Journal of Applied Mathematics and Mechanics. 79:250-263
Axisymmetric conical flows (CF) without swirling and their unsteady cylindrically and spherically symmetric self-similar analogues with a self-similarity exponent of unity are considered in the approximation of an ideal (inviscid and non-heat-conduct
Autor:
A.N. Kraiko, Kh.F. Valiyev
Publikováno v:
Journal of Applied Mathematics and Mechanics. 79:556-565
A self-similar solution of the problem on the dispersion of a finite mass of an ideal (inviscid and non-heat-conducting) gas that is compressed into a point and has infinite energy and finite entropy is obtained within classical (non-relativistic) ga
Autor:
Kh.F. Valiyev, A.N. Kraiko
Publikováno v:
Journal of Applied Mathematics and Mechanics. 75:218-226
The problem of the rapid intense cylindrically or spherically symmetrical compression of an ideal (non-viscous and non-heat-conducting) perfect gas with different adiabatic exponents is considered. We mean by rapid and intense a compression in a time
Autor:
Kh.F. Valiyev, A.N. Kraiko
Publikováno v:
Journal of Applied Mathematics and Mechanics. 75:675-690
Self-similar one-dimensional time-varying problems are considered under the assumption that there is a change in the adiabatic exponent in a shock wave (SW) running (“reflected”) from a centre or axis of symmetry (later from a centre of symmetry,
Autor:
Kh.F. Valiyev
Publikováno v:
Journal of Applied Mathematics and Mechanics. 73:281-289
The self-similar problem of the reflection of a shock wave from a centre or axis of symmetry for adiabatic exponents from 1.2 to 3 with a maximum step of 0.1 is solved. The distributions of the main parameters behind the reflected shock wave are obta
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.