Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Ketil Tveiten"'
Publikováno v:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 477
We introduce a class of Laurent polynomials, called maximally mutable Laurent polynomials (MMLPs), that we believe correspond under mirror symmetry to Fano varieties. A subclass of these, called rigid, are expected to correspond to Fano varieties wit
Autor:
Ketil Tveiten
Let $f$ be a Laurent polynomial in two variables, whose Newton polygon strictly contains the origin and whose vertices are primitive lattice points, and let $L_f$ be the minimal-order differential operator that annihilates the period integral of $f$.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::76e19e7c0b30ef9e552813519ba03e5b
http://arxiv.org/abs/1501.05095
http://arxiv.org/abs/1501.05095
Autor:
Alexander M. Kasprzyk, Andrea Petracci, Ketil Tveiten, Alessio Corti, Mohammad Akhtar, Alessandro Oneto, Liana Heuberger, Thomas Prince, Tom Coates
We state a number of conjectures that together allow one to classify a broad class of del Pezzo surfaces with cyclic quotient singularities using mirror symmetry. We prove our conjectures in the simplest cases. The conjectures relate mutation-equival
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::75db84557a4d6b611dc16a133e1b1f9f
Autor:
Ketil Tveiten
Given a polytope $\sigma\subset \mathbb{R}^m$, its characteristic distribution $\delta_\sigma$ generates a $D$-module which we call the characteristic $D$-module of $\sigma$ and denote by $M_\sigma$. More generally, the characteristic distributions o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::34f058ba017fdcb977d0e8ab771df641