Zobrazeno 1 - 10
of 68
pro vyhledávání: '"Keshari, Manoj K."'
Autor:
Keshari, Manoj K., Tikader, Soumi
Publikováno v:
J. Algebra 614 (2023) 848-866
Let $A$ be a ring of dimension $d$ containing an infinite field $k$, $T_1,\ldots,T_r$ be variables over $A$ and $P$ be a projective $A[T_1,\ldots,T_r]$-module of rank $n$. Assume one of the following conditions hold. (1) $2n\geq d+3$ and $P$ is exten
Externí odkaz:
http://arxiv.org/abs/2202.06291
Autor:
Keshari, Manoj K., Sharma, Sampat
Publikováno v:
JPAA 228 (2024) 107487
Let $R$ be an affine algebra of dimension $d\geq 4$ over a perfect field $k$ of char $\neq 2$ and $I$ be an ideal of $R$. Then - Um$_{d+1}(R,I)/{\rm E}_{d+1}(R,I)$ has nice group structure if $c.d._2(k)\leq 2$. - Um$_d(R,I)/{\rm E}_d(R,I)$ has nice g
Externí odkaz:
http://arxiv.org/abs/2112.11132
Autor:
Keshari, Manoj K., Tikader, Soumi
Publikováno v:
In Journal of Algebra 15 May 2024 646:494-504
Autor:
Keshari, Manoj K., Sharma, Sampat
Publikováno v:
Journal of Pure and Applied Algebra Volume 226, Issue 4, April 2022, 106889
(1) If $R$ is an affine algebra of dimension $d\geq 4$ over $\overline{\mathbb{F}}_{p}$ with $p>3$, then the group structure on ${\rm Um}_d(R)/{\rm E}_d(R)$ is nice. (2) If $R$ is a commutative noetherian ring of dimension $d\geq 2$ such that ${\rm E
Externí odkaz:
http://arxiv.org/abs/2104.09784
Autor:
Mathew, Maria A., Keshari, Manoj K.
Let $R$ be a commutative Noetherian ring of dimension $d$ and $M$ a commutative cancellative torsion-free seminormal monoid. Then (1) Let $A$ be a ring of type $R[d,m,n]$ and $P$ be a projective $A[M]$-module of rank $r \geq max\{2,d+1\}$. Then the a
Externí odkaz:
http://arxiv.org/abs/2104.09383
Autor:
Keshari, Manoj K., Sharma, Sampat
Publikováno v:
In Journal of Pure and Applied Algebra February 2024 228(2)
Autor:
Keshari, Manoj K., Tikader, Soumi
Publikováno v:
In Journal of Algebra 15 January 2023 614:848-866
Autor:
Keshari, Manoj K., Zinna, Md. Ali
Publikováno v:
J, Commut. Algebra 10 (2018), no 3, 359-373
Let $R$ be a Noetherian commutative ring of dimension $n$, $A=R[X_1,\cdots,X_m]$ be a polynomial ring over $R$ and $P$ be a projective $A[T]$-module of rank $n$. Assume that $P/TP$ and $P_f$ both contain a unimodular element for some monic polynomial
Externí odkaz:
http://arxiv.org/abs/1611.02469
Autor:
Keshari, Manoj K., Zinna, Md. Ali
Publikováno v:
J. Pure Appl. Algebra 221 (2017), no 11, 2805-2814
Let $R$ be an affine algebra over an algebraically closed field of characteristic $0$ with dim$(R)=n$. Let $P$ be a projective $A=R[T_1,\cdots,T_k]$-module of rank $n$ with determinant $L$. Suppose $I$ is an ideal of $A$ of height $n$ such that there
Externí odkaz:
http://arxiv.org/abs/1611.02471
Autor:
Keshari, Manoj K., Zinna, Md. Ali
Publikováno v:
J. Pure Appl. Algebra 221 (2017), no 4, 960-970
Let $R$ be a commutative Noetherian ring and $D$ be a discrete Hodge algebra over $R$ of dimension $d>\text{dim}(R)$. Then we show that (i) the top Euler class group $E^d(D)$ of $D$ is trivial. (ii) if $d>\text{dim}(R)+1$, then $(d-1)$-st Euler class
Externí odkaz:
http://arxiv.org/abs/1611.02468