Zobrazeno 1 - 10
of 3 536
pro vyhledávání: '"Kernel embedding of distributions"'
Publikováno v:
Journal of Data Science. 13:323-340
Probabilistic topic models have become a standard in modern machine learning to deal with a wide range of applications. Representing data by dimensional reduction of mixture proportion extracted from topic models is not only richer in semantics inter
Autor:
Benoit Quenneville, Silvia Bianconcini
Publikováno v:
Studies of Applied Economics. 28:553-574
Recently, reproducing kernel Hilbert spaces have been introduced to provide a common approach for studying several nonparametric estimators used for smoothing functional time series data (Dagum and Bianconcini, 2006 and 2008). The reproducing kernel
Autor:
Gauthier, Bertrand
We study the overall framework surrounding the Nyström approximation of integral operators with positive-semidefinite (PSD) kernels and the Nyström method for PSD-matrix approximation. These two methods correspond to two distinct approximation sche
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::f4a0f0f7901823f1cc0350ab8a5b891d
https://hal.archives-ouvertes.fr/hal-03207443v4/document
https://hal.archives-ouvertes.fr/hal-03207443v4/document
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
AAAI
Heterogeneous Transfer Learning (HTL) aims to solve transfer learning problems where a source domain and a target domain are of heterogeneous types of features. Most existing HTL approaches either explicitly learn feature mappings between the heterog
Autor:
Rui Wang, Yuesheng Xu
Publikováno v:
Applied and Computational Harmonic Analysis. 46:569-623
Motivated by the need of processing non-point-evaluation functional data, we introduce the notion of functional reproducing kernel Hilbert spaces (FRKHSs). This space admits a unique functional reproducing kernel which reproduces a family of continuo
Publikováno v:
IEEE Transactions on Systems, Man, and Cybernetics: Systems. 49:766-775
For most sparse coding methods, data samples are first encoded as hand-crafted features, followed by another separate learning step that generates dictionary and sparse codes. However, such feature representations may not be optimally compatible with
Publikováno v:
Pattern Recognition Letters. 119:86-93
Deblurring is to restore a latent clear image as well as to estimate an underlying blur kernel from a single blurry image. Motion blur kernel size is a significant input parameter of existing deblurring algorithms. Setting the size manually, which is
Publikováno v:
Computational Statistics. 34:1889-1909
In the context of computer experiments, metamodels are largely used to represent the output of computer codes. Among these models, Gaussian process regression (kriging) is very efficient see e.g Snelson (Flexible and efficient Gaussian process models
Autor:
Mohammed Al-Smadi
Publikováno v:
Ain Shams Engineering Journal, Vol 9, Iss 4, Pp 2517-2525 (2018)
In this article, we introduce a novel numerical scheme, the iterative reproducing kernel method (IRKM), for providing numerical approximate solutions of a certain class of time-fractional boundary value problem within favorable aspects of the reprodu