Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Keri Sather-Wagstaff"'
Publikováno v:
Journal of Algebra. 610:463-490
We describe new classes of noetherian local rings $R$ whose finitely generated modules $M$ have the property that $Tor_i^R(M,M)=0$ for $i\gg 0$ implies that $M$ has finite projective dimension, or $Ext^i_R(M,M)=0$ for $i\gg 0$ implies that $M$ has fi
Autor:
Keri Sather-Wagstaff
Publikováno v:
Commutative Algebra. :153-167
We investigate modules for which vanishing of Tor-modules implies finiteness of homological dimensions (e.g., projective dimension and G-dimension). In particular, we answer a question of O. Celikbas and Sather-Wagstaff about ascent properties of suc
Autor:
Saeed Nasseh, Keri Sather-Wagstaff
Publikováno v:
Commutative Algebra ISBN: 9783030896935
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::881fb99bdc55354426f2ef0ac08e4917
https://doi.org/10.1007/978-3-030-89694-2_19
https://doi.org/10.1007/978-3-030-89694-2_19
Autor:
Jacob Honeycutt, Keri Sather-Wagstaff
We investigate Sharifan and Moradi's closed neighborhood ideal of a finite simple graph, which is a square-free monomial ideal in a polynomial ring over a field. We explicitly describe the minimal irreducible decompositions of these ideals. We also c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e701ecf9fe2d6d993e3a5330f48d098b
Autor:
Hannah Altmann, Keri Sather-Wagstaff
Publikováno v:
Association for Women in Mathematics Series ISBN: 9783030919856
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::04b886f7aba264a5826f75dfe39a4f40
https://doi.org/10.1007/978-3-030-91986-3_1
https://doi.org/10.1007/978-3-030-91986-3_1
A commutative Noetherian ring $R$ is said to be Tor-persistent if, for any finitely generated $R$-module $M$, the vanishing of $\operatorname{Tor}_i^R(M,M)$ for $i\gg 0$ implies $M$ has finite projective dimension. An open question of Avramov, et. al
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1280e9e9a5c96a3a168d8d8eb14847f1