Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Kento Ohtani"'
Autor:
Masanori Shimamoto, Kanako Ishizuka, Kento Ohtani, Toshiya Inada, Maeri Yamamoto, Masako Tachibana, Hiroki Kimura, Yusuke Sakai, Kazuhiro Kobayashi, Norio Ozaki, Masashi Ikeda
Publikováno v:
Neuropsychopharmacology Reports, Vol 44, Iss 1, Pp 115-120 (2024)
Abstract Aim Depressive disorder is often evaluated using established rating scales. However, consistent data collection with these scales requires trained professionals. In the present study, the “rater & estimation‐system” reliability was ass
Externí odkaz:
https://doaj.org/article/a7265057916b40f7b165fc6cf46195e6
Publikováno v:
IEEE Access, Vol 12, Pp 67589-67599 (2024)
Traffic accidents frequently lead to fatal injuries, claiming millions of lives every year. To mitigate driving hazards and ensure personal safety, it is crucial to assist vehicles in anticipating the objects in the traffic scene (treated here as imp
Externí odkaz:
https://doaj.org/article/d16a60f359794c2096f7f709e082fc87
Autor:
Robin Karlsson, Ruslan Asfandiyarov, Alexander Carballo, Keisuke Fujii, Kento Ohtani, Kazuya Takeda
Publikováno v:
Sensors, Vol 24, Iss 14, p 4735 (2024)
Cognitive scientists believe that adaptable intelligent agents like humans perform spatial reasoning tasks by learned causal mental simulation. The problem of learning these simulations is called predictive world modeling. We present the first framew
Externí odkaz:
https://doaj.org/article/5fe4055bd6bd438f9323aa40cf9317f9
Autor:
Yuxiao Zhang, Ming Ding, Hanting Yang, Yingjie Niu, Maoning Ge, Kento Ohtani, Chi Zhang, Kazuya Takeda
Publikováno v:
Remote Sensing, Vol 16, Iss 12, p 2247 (2024)
The perception systems of autonomous vehicles face significant challenges under adverse conditions, with issues such as obscured objects and false detections due to environmental noise. Traditional approaches, which typically focus on noise removal,
Externí odkaz:
https://doaj.org/article/65d4808736f546f78a38274f883e7c24
Publikováno v:
Sensors, Vol 23, Iss 21, p 8660 (2023)
LiDAR point clouds are significantly impacted by snow in driving scenarios, introducing scattered noise points and phantom objects, thereby compromising the perception capabilities of autonomous driving systems. Current effective methods for removing
Externí odkaz:
https://doaj.org/article/edee217b7c614c6193fc25be77b62309
Publikováno v:
Robot Intelligence Technology and Applications 7 ISBN: 9783031268885
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7d4859f5801500b72c7f98c6c1ce379d
https://doi.org/10.1007/978-3-031-26889-2_26
https://doi.org/10.1007/978-3-031-26889-2_26
Publikováno v:
The Adjunct Publication of the 35th Annual ACM Symposium on User Interface Software and Technology.
Publikováno v:
2022 IEEE Intelligent Vehicles Symposium (IV).
Publikováno v:
2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops).
Publikováno v:
IEICE Transactions on Information and Systems. :2635-2643