Zobrazeno 1 - 10
of 119
pro vyhledávání: '"Keng Peng Tee"'
Publikováno v:
Frontiers in Robotics and AI, Vol 9 (2022)
Externí odkaz:
https://doaj.org/article/e437f6b05b8744b0a168d1c3cb6733ff
Publikováno v:
Robotics, Vol 4, Iss 3, Pp 365-397 (2015)
Multi-robot foraging has been widely studied in the literature, and the general assumption is that the robots are simple, i.e., with limited processing and carrying capacity. We previously studied continuous foraging with slightly more capable robots
Externí odkaz:
https://doaj.org/article/dfead6ee17164307accab754cea9f851
Publikováno v:
Nature Machine Intelligence. 4:533-543
Publikováno v:
IEEE Transactions on Systems, Man, and Cybernetics: Systems. 52:2450-2463
Previous research on finite-time control focuses on forcing a system state (vector) to converge within a certain time moment, regardless of how each state element converges. In the present work, we introduce a control problem with unique finite/fixed
Publikováno v:
Neurocomputing. 447:213-223
Considering the bias of the dynamics which is a global trend of the dynamical equation of a robot manipulator because of the gravity or the constant payloads, two kinds of adaptive bias radial basis function neural network (RBFNN) control schemes, wh
Autor:
Cihan Acar, Keng Peng Tee
Publikováno v:
ICRA
Sampling-based motion planning under task constraints is challenging because the null-measure constraint manifold in the configuration space makes rejection sampling extremely inefficient, if not impossible. This paper presents a learning-based sampl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ec522a1ffca116fe7f7a3685b511f1cd
http://arxiv.org/abs/2204.06791
http://arxiv.org/abs/2204.06791
Publikováno v:
2021 21st International Conference on Control, Automation and Systems (ICCAS).
Publikováno v:
2021 21st International Conference on Control, Automation and Systems (ICCAS).
Autor:
Samuel Cheong, Tai Pang Chen, Cihan Acar, Yangwei You, Yuda Chen, Wan Leong Sim, Keng Peng Tee
Publikováno v:
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Autor:
Samuel Cheong, Cihan Acar, Yangwei You, Kun Zhang, Yuda Chen, Keng Peng Tee, Tai Pang Chen, Albertus Hendrawan Adiwahono, Fon Lin Lai
Publikováno v:
ICRA
This paper introduces a general state estimation framework fusing multiple sensor information for hybrid wheeled-legged robots performing mobile manipulation tasks. At the core of the state estimator is a novel unified odometry for hybrid locomotion