Zobrazeno 1 - 10
of 145
pro vyhledávání: '"Kemnitz, Arnfried"'
Publikováno v:
In Discrete Applied Mathematics 15 February 2024 344:1-9
Autor:
KEMNITZ, ARNFRIED1 a.kemnitz@tu-bs.de, MARANGIO, MASSIMILIANO1 m.marangio@tu-bs.de
Publikováno v:
Discussiones Mathematicae: Graph Theory. 2023, Vol. 43 Issue 4, p979-997. 19p.
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 42, Iss 1, Pp 249-262 (2022)
For an arbitrary invariant ρ(G) of a graph G the ρ-edge stability number esρ(G) is the minimum number of edges of G whose removal results in a graph H ⊆ G with ρ(H) ≠ ρ(G) or with E(H) = ∅.
Externí odkaz:
https://doaj.org/article/cc79987f9ea1479f83c18e191e709160
Publikováno v:
In Discrete Mathematics July 2021 344(7)
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 39, Iss 3, Pp 689-703 (2019)
A (graph) property 𝒫 is a class of simple finite graphs closed under isomorphisms. In this paper we consider generalizations of sum list colorings of graphs with respect to properties 𝒫.
Externí odkaz:
https://doaj.org/article/6e3fe3f398a346f697d7223b58def5dd
Autor:
Kemnitz, Arnfried, Schiermeyer, Ingo
Publikováno v:
In Discrete Applied Mathematics 20 August 2016 209:247-250
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 36, Iss 3, Pp 709-722 (2016)
Let G = (V,E) be a simple graph and for every edge e ∈ E let L(e) be a set (list) of available colors. The graph G is called L-edge colorable if there is a proper edge coloring c of G with c(e) ∈ L(e) for all e ∈ E. A function f : E → ℕ is
Externí odkaz:
https://doaj.org/article/2721c510c12b427ab927860f0dff8b84
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 35, Iss 3, Pp 517-532 (2015)
Let P and Q be additive and hereditary graph properties, r, s ∈ N, r ≥ s, and [ℤr]s be the set of all s-element subsets of ℤr. An (r, s)-fractional (P,Q)-total coloring of G is an assignment h : V (G) ∪ E(G) → [ℤr]s such that for each i
Externí odkaz:
https://doaj.org/article/6018a8055cd54585a87741f82d697efd
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 35, Iss 2, Pp 329-334 (2015)
In 1980 Bondy [2] proved that a (k+s)-connected graph of order n ≥ 3 is traceable (s = −1) or Hamiltonian (s = 0) or Hamiltonian-connected (s = 1) if the degree sum of every set of k+1 pairwise nonadjacent vertices is at least ((k+1)(n+s−1)+1)/
Externí odkaz:
https://doaj.org/article/1824a25606f34a9b872148b775286116
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 33, Iss 1, Pp 181-192 (2013)
An edge-coloured connected graph G = (V,E) is called rainbow-connected if each pair of distinct vertices of G is connected by a path whose edges have distinct colours. The rainbow connection number of G, denoted by rc(G), is the minimum number of col
Externí odkaz:
https://doaj.org/article/2ae0a44c6dd64419bae4ab99ea9e8440