Zobrazeno 1 - 10
of 67
pro vyhledávání: '"Keller, Julien"'
Autor:
Keller, Julien, Scarpa, Carlo
We prove that the existence of a $Z$-positive and $Z$-critical Hermitian metric on a rank 2 holomorphic vector bundle over a compact K\"ahler surface implies that the bundle is $Z$-stable. As particular cases, we obtain stability results for the defo
Externí odkaz:
http://arxiv.org/abs/2405.03312
Autor:
Hashimoto, Yoshinori, Keller, Julien
We present some results that complement our prequels [arXiv:1809.08425,arXiv:1907.05770] on holomorphic vector bundles. We apply the method of the Quot-scheme limit of Fubini-Study metrics developed therein to provide a generalisation to the singular
Externí odkaz:
http://arxiv.org/abs/2101.00996
Autor:
Hashimoto, Yoshinori, Keller, Julien
This is a sequel of our paper [arXiv:1809.08425] on the Quot-scheme limit and variational properties of Donaldson's functional, which established its coercivity for slope stable holomorphic vector bundles over smooth projective varieties. Assuming th
Externí odkaz:
http://arxiv.org/abs/1907.05770
Autor:
Hashimoto, Yoshinori, Keller, Julien
Publikováno v:
Ãpijournal de Géométrie Algébrique, Volume 5 (January 3, 2022) epiga:6577
For a holomorphic vector bundle $E$ over a polarised K\"ahler manifold, we establish a direct link between the slope stability of $E$ and the asymptotic behaviour of Donaldson's functional, by defining the Quot-scheme limit of Fubini-Study metrics. I
Externí odkaz:
http://arxiv.org/abs/1809.08425
Autor:
Hashimoto, Yoshinori, Keller, Julien
From the work of Dervan-Keller, there exists a quantization of the critical equation for the J-flow. This leads to the notion of J-balanced metrics. We prove that the existence of J-balanced metrics has a purely algebro-geometric characterization in
Externí odkaz:
http://arxiv.org/abs/1705.02000
Autor:
Keller, Julien, Zheng, Kai
Publikováno v:
Proc. Lond. Math. Soc. (2018)
Over a compact K\"ahler manifold, we provide a Fredholm alternative result for the Lichnerowicz operator associated to a K\"ahler metric with conic singularities along a divisor. We deduce several existence results of constant scalar curvature K\"ahl
Externí odkaz:
http://arxiv.org/abs/1703.06312
Autor:
Keller, Julien, Lejmi, Mehdi
On a pre-quantized symplectic manifold, we show that the symplectic Futaki invariant, which is an obstruction to the existence of constant Hermitian scalar curvature almost-K\"ahler metrics, is actually an asymptotic invariant. This allows us to dedu
Externí odkaz:
http://arxiv.org/abs/1702.01810
Autor:
Apostolov, Vestislav, Keller, Julien
Let $P(E)$ be the projectivization of a holomorphic vector bundle $E$ over a compact complex curve $C$. We characterize the existence of an extremal K\"ahler metric on the ruled manifold $P(E)$ in terms of relative K-polystability and the fact that $
Externí odkaz:
http://arxiv.org/abs/1701.08507
We provide an algebraic framework for quantization of Hermitian metrics that are solutions of the Hitchin equation for Higgs bundles over a projective manifold. Using Geometric Invariant Theory, we introduce a notion of balanced metrics in this conte
Externí odkaz:
http://arxiv.org/abs/1601.04960
Autor:
Dervan, Ruadhaí, Keller, Julien
We define a quantisation of the J-flow over a projective complex manifold. As corollaries, we obtain new proofs of uniqueness of critical points of the J-flow and that these critical points achieve the absolute minimum of an associated energy functio
Externí odkaz:
http://arxiv.org/abs/1507.03461