Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Keith Ameyaw"'
Autor:
Shuo Wang, Daksh Chauhan, Hena Patel, Alborz amir-Khalili, Isabel Ferreira da Silva, Alireza Sojoudi, Silke Friedrich, Amita Singh, Luis Landeras, Tamari Miller, Keith Ameyaw, Akhil Narang, Keigo Kawaji, Qiang Tang, Victor Mor-Avi, Amit R. Patel
Publikováno v:
Journal of Cardiovascular Magnetic Resonance, Vol 24, Iss 1, Pp 1-12 (2022)
Abstract Background Theoretically, artificial intelligence can provide an accurate automatic solution to measure right ventricular (RV) ejection fraction (RVEF) from cardiovascular magnetic resonance (CMR) images, despite the complex RV geometry. How
Externí odkaz:
https://doaj.org/article/e5f9830461cb4bab9acd292e23240c2d
Autor:
Shuo Wang, Hena Patel, Tamari Miller, Keith Ameyaw, Patrick Miller, Akhil Narang, Keigo Kawaji, Amita Singh, Luis Landeras, Xing-Peng Liu, Victor Mor-Avi, Amit R. Patel
Publikováno v:
Am J Cardiol
Quantification of myocardial perfusion reserve (MPR) using vasodilator stress cardiac magnetic resonance is increasingly used to detect coronary artery disease. However, MPR can also be altered because of changes in microvascular function. We aimed t
Autor:
Amit R. Patel, Roberto M. Lang, Keigo Kawaji, Akhil Narang, Xing-Peng Liu, Tamari Miller, Keith Ameyaw, Shuo Wang, Simran Anand, Stephanie A. Besser, Daksh Chauhan, Hena Patel, Emeka Anyanwu, Victor Mor-Avi
Publikováno v:
JACC: Cardiovascular Imaging. 15:413-427
Objectives The aim of this study was to determine whether left ventricular ejection fraction (LVEF) and right ventricular ejection fraction (RVEF) and left ventricular mass (LVM) measurements made using 3 fully automated deep learning (DL) algorithms
Cutaneous wounds are common afflictions that follow a stereotypical healing process involving hemostasis, inflammation, proliferation, and remodeling phases. In the elderly or those suffering from vascular or metabolic diseases, poor healing followin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e2dedc9ef2fb7a673b50380f9c3623cb
https://doi.org/10.1101/2022.11.07.515499
https://doi.org/10.1101/2022.11.07.515499
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Tamari Miller, Victor Mor-Avi, Keigo Kawaji, Akhil Narang, Patel R Amit, Qiang Tang, Daksh Chauhan, Keith Ameyaw, Shuo Wang, Hena Patel, Stephanie A. Besser
Publikováno v:
Circulation. 142
Background: It is unclear whether artificial intelligence (AI) can provide automatic solutions to measure right ventricular ejection fraction (RVEF), due to the complex RV geometry. Although several deep learning (DL) algorithms are available to quan
Publikováno v:
Journal of Vascular and Interventional Radiology. 31:462-463
Autor:
Akhil Narang, Keith Ameyaw, Shuo Wang, Tamari Miller, Amit R. Patel, Keigo Kawaji, Victor Mor-Avi, Hena Patel
Publikováno v:
Journal of the American College of Cardiology. 77:1435
Autor:
Hena Patel, Akhil Narang, Keigo Kawaji, Amit R. Patel, Victor Mor-Avi, Keith Ameyaw, Shuo Wang, Miller Tamari
Publikováno v:
Journal of the American College of Cardiology. 75:1685
New deep learning (DL) algorithms for automated quantification of left ventricular (LV) ejection fraction (EF) from cardiac magnetic resonance (CMR) images need to be validated prior to clinical use. We hypothesized that a novel, fully automated DL a
Autor:
Tamari Miller, Elena Perez, Nimit Desai, Akhil Narang, Amit R. Patel, Keith Ameyaw, Roberto M. Lang, Victor Mor-Avi, Megan Sullivan
Publikováno v:
Journal of the American College of Cardiology. 73:1638