Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Keilthy, Adam"'
Autor:
Keilthy, Adam, Raum, Martin
We relate analytically defined deformations of modular curves and modular forms from the literature to motivic periods via cohomological descriptions of deformation theory. Leveraging cohomological vanishing results, we prove the existence and essent
Externí odkaz:
http://arxiv.org/abs/2404.03519
Autor:
Keilthy, Adam
Using the block filtration as a realisation of the coradical filtration, we study the discrepancy between the depth filtration and the coradical filtration for motivic multiple zeta values. We construct an explicit dictionary between a certain subspa
Externí odkaz:
http://arxiv.org/abs/2307.08089
Publikováno v:
Algebraic Combinatorics, Volume 7 (2024) 801-842
We introduce a new operad-like structure that we call a reconnectad; the ``input'' of an element of a reconnectad is a finite simple graph, rather than a finite set, and ``compositions'' of elements are performed according to the notion of the reconn
Externí odkaz:
http://arxiv.org/abs/2211.15754
Autor:
Charlton, Steven, Keilthy, Adam
In studying the depth filtration on multiple zeta values, difficulties quickly arise due to a disparity between it and the coradical filtration. In particular, there are additional relations in the depth graded algebra coming from period polynomials
Externí odkaz:
http://arxiv.org/abs/2210.03616
Autor:
Keilthy, Adam
A large family of relations among multiple zeta values may be described using the combinatorics of shuffle and quasi-shuffle algebras. While the structure of shuffle algebras have been well understood for some time now, quasi-shuffle algebras were on
Externí odkaz:
http://arxiv.org/abs/2202.04739
Autor:
Keilthy, Adam
Publikováno v:
Journal of Number Theory, volume 238,2022, pg 883-919
We extend the block filtration, defined by Brown based on the work of Charlton, to all motivic multiple zeta values, and study relations compatible with this filtration. We construct a Lie algebra describing relations among motivic multiple zeta valu
Externí odkaz:
http://arxiv.org/abs/2006.03003
Autor:
Keilthy, Adam
Publikováno v:
In Journal of Number Theory September 2022 238:883-919
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Hamaker, Zachary, Keilthy, Adam, Patrias, Rebecca, Webster, Lillian, Zhang, Yinuo, Zhou, Shuqi
Patrias and Pylyavskyy introduced shifted Hecke insertion as an application of their theory of dual filtered graphs. We use shifted Hecke insertion to construct symmetric function representatives for the K-theory of the orthogonal Grassmannian. These
Externí odkaz:
http://arxiv.org/abs/1510.08972
Autor:
Keilthy, Adam, Osburn, Robert
Publikováno v:
Journal of Number Theory 161 (2016), 255-280
We highlight the role of q-series techniques in proving identities arising from knot theory. In particular, we prove Rogers-Ramanujan type identities for alternating knots as conjectured by Garoufalidis, Le and Zagier.
Comment: 26 pages, typos c
Comment: 26 pages, typos c
Externí odkaz:
http://arxiv.org/abs/1407.3482